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1. Introduction"

Computation of the flow field inside a space shuttle main engine (SSME) requires

the application of the state-of-the-art CFD technology. Several computer codes are under

development to solve three dimensional Navier-Stokes equations for analyzing the SSME

internal flow, such as the flow through the hot gas manifold. The computational methods

used in the Navier-Stokes codes fall into two major categories: finite difference and finite

element methods. Some of the algorithms are designed to solve the unsteady compress-

ible Navier-Stokes equations, either by explicit or by implicit factorization methods, using

several hundred or thousands of time steps to reach a steady-state solution asymptotically.

Other algorithms attempt to solve the steady-state equations by relaxation methods. All

of them require body-fitting curvilinear grids with sufficient resolution. Grid requirements,

however, differ greatly with the region being modelled and the algorithm used. Implicit

factorization based on finite differences typically uses global numerical transformations

whereby the transformed grid in the computational space is uniform and rectilinear. This

requires the grid to have indices which are separable in the three directions for three di-

mensional problems, and also be reasonably smooth. However, such requirements may

introduce grid singularities when complicated domains are discretized. Flow solver algo-

rithm will have to deal with such grid singularities. Explicit schemes and finite element al-

gorithms have less stringent requirements on the grid structure. However, explicit schemes

are slow to converge because of the stability limitations on time step, particularly for large

scale viscous problems.

The finite element method is characterized by three basic features which are credited

for the enormous success the method has enjoyed in the solution of practical engineering

problems. The first feature is that every computational domain is viewed as a collection of

simple subdomains, called finite elements. This feature allows us to represent complicated

geometries as assemblages of simple parts. It is a desirable feature in the solution of flow

problems in complex configurations, not only to describe the complex geometry but also to

choose the most suitable computational grid for a particular flow. This feature also allows

us to place or remove any obstructions routinely into the flow field. The second feature is

that over each element the solution is represented by polynomials of desired degree. This

allows us to compute the solution as a continuous function of position instead of at selected

few points. The third feature is that the relationship (i.e., the algebraic equations) between

the solution and its dual variables is developed using a variational method, such as the

Galerkin method. The boundary conditions are then applied on the algebraic equations

directly before solving. The three features of the finite element method also allow the easy

development and interfacing of pre- and post-processors, and user-defined subroutines for

equations for state and turbulence models.

The Galerkin finite element method (i.e., the weight functions are the same as the

approximation functions) applied to flow problems always results in implicit schemes. The
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weighted-residual (or Petrov-Galerkin) method, in which the weight functions are differ-

ent from the approximation functions,can be used in conjunction with explicitschemes

to obtain explicitfinalequations. For example, by selectingthe weight functions to be

orthogonal to the approximation functions, the mass matrix can be diagonalized. How-

ever, such considerations are entirely in the interest of obtaining explicit schemes and not

necessarily in the interest of accuracy or even computational efficiency. In the current

project an implicit finite element scheme with suitable dissipation terms for stability is

developed. A relaxation procedure, known as the locally implicit scheme is developed to

solve the coupled set of algebraic equations efficiently.

Allowing the possibility of unstructured grids is important for discretizing complex

flow domains efficiently and also for adding the features of solution-adaptive grids. For

grids with large numbers of nodes, direct solution procedures for the finite element equa-

tions become impractical. Thus w_.___ehave undertaken the development of a new iterative

algorithm for the solution of imp_cit finite element equations without assembling global

matrices. It is an efficient iteration scheme based on a modified non-linear Gauss-Seidel

iteration with symmetric sweeps. This algorithm is analyzed for a model equation and is

shown to be unconditionally stable. This analysis is reported in the next Section.

The locally implicit scheme is unconditionally stable based on local linearized anal-

ysis. However, for strongly convective flows there is a possibility of non-linear numerical

instabilities occurring in some parts of the flow domain and eventually destabilizing the

entire flow domain. We have added adaptive artificial dissipation terms of third order to

the finite element approximations similar to Jameson and others (1). These are designed

to suppress non-linear instabilities if they appear and at the same time be much smaller

than the real viscosity terms in viscous zones.

In numerical schemes for solving fluid flow equations, there is some degree of uncer-

tainty as to the imposition of boundary conditions on some of the variables at different

types of boundaries, particularly at the inflow and outflow boundaries. _e current fi-

nite element code we have developed special procedures to compute the required flux terms

at the boundary surfaces to the same degrees of accuracy as in the interior. We expect

that our technique of computing the required surface fluxes iteratively, together with the

interior flow variables, should _ze the uncertainties in the imposition of boundary

conditions.

The locally implicit scheme is tested on a variety of problems. It has been shown

to be efficient with multi-grid acceleration procedures for elliptic problems by Reddy and

Nayani (2) and for inviscid compressible flows from transonic to supersonic Mach numbers

by Reddy and Jacocks (3). Reddy, Reddy and Nayani (4) have developed this scheme for

viscous flow problems. We developed a 2-D test code for solving unsteady compressible

Navier-Stokes equations with finite volume approximation, which is a special case of the

finite element approximation. This code has been used to check various features of the
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locally implicit solution algorithm. We have also added an algebraic turbulence model

developed by Baldwin and Lomax (5).

Results for a series of test problems are presented in this report. The finite element

code has been tested for Couette flow, described in Schlichting (6), which is a flow under a

pressure gradient between two parallel plates in relative motion. Another problem that has

been solved is viscous laminar flow over a flat plate. As a test case for the locally implicit

scheme, the 2-D finite volume code has been applied to compute subsonic and transonic

viscous flows over airfoils for both laminar and turbulent cases. The general 3-D finite

element code has been used to compute the flow in an axisymmetric turnaround duct at

low Mach numbers.

-3-



2. Locally Implicit Scheme for a Model Equation

Locally implicit scheme is a relaxation method for solving the non-linear finite element

equations approximating the Navier-Stokes equations. It is a point iteration method at

each time step. However, it is not necessary for the iteration to converge fully at each time

step if we are interested in computing the time asymptotic steady-state solutions. The

analysis of the consistency, stability and hence convergence of the scheme is presented for

a model equation for the Navier-Stokes equations.

Consider a one-dimensional eonvection-ditfamion equation,

au au #%
=

Finite element approximation at a node j on a uniform mesh for equation (2.1) can be
written as

ax

where di is a global test function corresponding to the node j. For a linear element

approximation, equation (2.2) gives

-_ _ttj--1 _-_Uj dr _tljq-1 "_- _ (Ui't'I--ttJ -1)

- _ (ui-l-2u i+ui+1 )=0

(2.3)

Implicit time integration gives

1 2 1 c, .+I .L+t)

. n+l_

(2.4)

where Au i = u_ +1. - Ujn

C = aAt/Az, R = vAt/Az 2

Equation (2.4), together with appropriate boundary conditions, gives a system of linear

equations which can be solved easily in one-dimeusion and this scheme is unconditionally

stable. However, the system of equations becomes too large in multi-dimensions and vari-

ous types of sparse matrix solvers are developed in the literature, but they are usable only

with a modest number of nodes. Alternately, we develop a relaxation scheme to solve (2.4)

approximately at each time step. The scheme is a modification of the symmetric Gauss-

Seidel iteration. The basic Gauss-Seidel iteration, even with symmetric sweeps, is unstable
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for a whole range of Courant number C in equation (2.4). The present modification makes

it unconditionally stable. Rewrite the equation (2.4) in delta form as

1 2 1 C

_Aui_, + _ui + g_us+, + 7 (_-s+, - Aui_,)

- R (AuS_I - 2Au s + AuS+I) = Res_

(2.5)

A(O)
u s = 0 (2.7)

1 C
du s + "_dus+l + _du.i+l

- R (-2du s + dus+l ) = RHS

2__ (,.) 1__ (m)
+ _zau_ + _zaus+ 1

where

RHS=Res'_- [1_ (,.+1)L_,,us_,

AuXin+l) ,, (m)= zau s + duj,

Left-to-right sweep yields

(2.8)

(2.9)

+_c k"u_+'t-(-) _ ,,us_,_(-+,)_/_ _ k,.,,_1/-(-+1)_ 2_u_-) + zxus+_)](-)

Now we approximate dui+l _- du i and replace C by its absolute value ]C I on the left side

of equation (2.8), to accommodate convection velocity direction either in or opposite to

the iteration sweep direction. This leads to an explicit expression for dus:

(6 + ? +'R) dui = RH, (2.10)

Right-to-left sweep is defined similarly. A symmetric iteration sweep consists of a left-to-

fight sweep followed by a right-to-left sweep. It may be noted that du s is the iterative

correction to the time change iterates -- (m)_U s and if the iteration process is convergent,

--5--

where

R¢._ = C un n-_ ( ,+, - us-,) + R (u;'_l- 2u_+ us+,) (2.6)

As Au s = u'_ +1 r,- u s ---, 0 as n ---, oo, we obtain the asymptotic steady-state solution as the

Res.i function is driven to zero. This process may be speeded up and made more robust

by choosing a value for R on the left side of equation (2.5) larger than the value of R on

the fight side of equation (2.5). To analyze this process we use the notation R for R on

the left side of equation (2.5). It may be noted that we can always obtain time accurate

solution, if that is required, by choosing R = R. We solve for Au s at each time step by a

modified Gauss-Seidel iteration:



RHS --* 0 and the equation (2.5) can be satisfied as accurately as we wish by carrying

out the necessary number of symmetric iteration sweeps. The approximations made in

the iteration do not affect the actual solution itself. Thus the iteration equations are

consistent with the basic equations. One or two symmetric sweeps per time step are usually

sufficient for obtaining steady-state solutions. Local stability analysis can be carded out

by computing the amplification factor of discrete Fourier modal solutions per time step.

In this analysis, we seek modal solutions of the equations (2.9) and (2.10) in the form

.°
n

u i=v"e 'Jr, O<__.=aAx<_,r

A (m) ----Av(m)eijfuj m-- 0,1,...

U_ +1 --- un+leiJf

For a single symmetric sweep per time step (m = O, 1),

vn+l _ v n -{- AV(2) -- g(_)v n

where g(_) is known as the amplification factor from one time step to the next and is given

by

g(_)=l+_ 1+ , 0_<__<_"

r = --Ci sin _ + 2R(cos _ - 1)

h2 = b- "_ - _ + e -if +"R-

hs =b+eq (C-R+ 1)

5 Icl
b=g+-g-+_

A necessary condition for stability is [g({)[ < 1. It can be shown that [g(_)[ is indeed < 1

unconditionally. It is also desirable to have Ig(_)l< 1 as much as possible for _ closer to ,r

which represents the range of high frequency modes of the solution. Figure I shows plots of

-fiIg(_)lversus _ for different Courant numbers for R = R = . Figure 2 shows plots of [g[

versus _ for C = 10, R = R and R takes different values. Figure3 shows the plots for C =

10, R = 2R and R takes different values. Numerical plots of Ig[ against _ confirm that the

scheme is unconditionally stable. However, very large Courant numbers are not necessarily

the best. Courant number C -_ 10 and R = 2R --, 4R seem desirable ranges. Amplification

factors corresponding to two or more symmetric modified Gauss-Seidel iterations have

similar behavior. Thus we establish unconditional stability for the modified Gauss-Seidel

iteration scheme for the convection-diffusion equation. Similar stability can be shown
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when the diffusion term is replaced by a 4th difference term of the type that is used as

artificial viscosity term of third order for suppressing non-linear instabilities for convection

dominated flows. It is possible to use artificial viscosity terms which are smaller than the

truncation terms of the second order accurate finite element approximations. In the present

Navier-Stokes finite element code where we compute all terms to full second order accuracy,

artificial dissipation terms, which are an order of magnitude smaller then truncation error,

are included to suppress non-linear instabilities. Stability analysis of the model equation

indicates that the locally implicit scheme is unconditionally stable in a local linearized

sense.
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3. Locally Implicit Scheme for Navier-Stokes Equations

Many algorithms designed to solvethe unsteady compressible Navier-Stokes equations

use eitherexplicitmethods or implicitfactorizationmethods. Finite element approxima-

tionsusually yield implicitequations. These are solved by explicittime integrationmeth-

ods after making additional approximations. Explicit methods may take thousands of

time steps to converge. Solving them implicitlywith Newton iterationispossible,but the

matrix storage requirements for the resultingalgebraicequations and the solution process

make itprohibitiveeven for modest sizethree dimensional flow problems. There are other

algorithms based on relaxationmethods. We have developed a locallyimplicitmethod for

solving the non-linear finiteelement approximations for 3-D Navier-Stokes equations at

each time step.

The method isbased on a relaxationprocedure forsolving the finiteelement equations

corresponding to each node iteratively.The equations for the elements surrounding a

particular node are evaluated based on the latestiteratesfor the flow variables at the

nodes around it and the solution is updated at that node by a modified Gauss-Seidel

iteration. This procedure does not require the assembly of a global matrix, in contrast

to the standard finiteelement algorithms. It does not require the solution of a system

of large number of equations. Thus it is a matrix-free implicit finiteelement algorithm.

An additional feature of the algorithm is that while it uses tri-linearapproximations for

the flow variablesin quadilateral (brick)elements, allthe non-linear fluxesin the Navier-

Stokes equations are evaluated without any further linearapproximation. The fluxes are

non-linear and are computed accordingly. This assures the second order spatialaccuracy

of the scheme even for unstructured grids.

3.1 Finite Element Approximations

as

The unsteady, compressible Navier-Stokes equations are written in conservation form

{u}= , = , =
+ p)

p_

where

{_I} and {F_} represent the inviscid and viscous fluxes respectively.

equations are given in Appendix I.

Details of these
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The variational form (weak form) of equation (3.1) over an element fie is written as

0= Le / {_}T {_U/- {¢_}T" {:v "_" :I}) dr'}"/s .{_}T{Fn}dS (3.2)

where {4,} are test functions. They are tri-linear functions for linear finite element ap-

proximation and piecewise constants for finite volume approximations. Fn "- (_v + _I).

where 6 is the outward drawn unit normal to the surface S e of the element _e. The con-

servation variables U = (Uo, c_ = 1,-.. 5) are approximated by the interpolation functions

_j as
N

Ua - _-_U_q}j(z,y,z) _= {_'}{Uo} (3.3)
jffil

where

{_}= {_,_2-.._N},{0o}= (_'_ ...U_)"N'T

0_ is the numerical value of the trth component of the conservation flow variable U at

jth localnode of the element f_. The interpolationfunctions _I'and test functions @ are

chosen to be the same for compressible flow equations. N = 8 for tri-linear approximations

on quadrilateral brick elements. These approximations axe done according to the standard

finite element approximations (Ref. 7).

Define the total nodal vector of the conservation variables at the nodes of an element as

{0} { }= . ;[_]'

×1 5×5N

{#}
{0}

= {0}
{0}
{o}

{o} {o} {o} {o}]
{_} {0} {0} {o}J{0} {_} {0} {o}
{0} {0} {_} {o}
{o} {0} {o} {_}

Then

{u} = u_. = [#]'{0}"

5xl Us

Now the variationalstatement (2) can be written as

(3.4)

(3.5)

It should be noted at this point that i_ and Fn are non-linear functions of U and thus

the integralsinvolving them can be expressed analyticallyin terms of the components

of U. These expressions are long but they can be programmed into the computer code
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efficiently.

the Euler implicit scheme as follows:

where

The coupled non-linear differential equations (3.5) are discretized in time by

I[Mel{AU'} + {'Re} ''+1 = {0} (3.6)

_ (6,),,,+, _ ,.- time level
t

[Mt]- lfl (_I/]TI_I/]dV (3.7)

{7_.e } ..._ -- _fl [,_]T. ,{.t_}dV + _S.[_]T{F n }dS (3.8)

Details of the expression {_t} in equation (3.8) are given in Appendix II. In the standard

finite element algorithms, the element equations (3.6) are linearized, usually by Newton

method, and all the element equations are assembled to derive a global system of linear

equations which are solved by sparse matrix solvers. For large scale problems the matrices

involved become too big to be practical. Here we develop a matrix-free relaxation method

to solve the non-linear equations directly by a modified Gauss-Seidel iteration.

3.2 Locally Implicit Scheme

We wish to solve the non-linear finite element equations iteratively at a node i. We

assume the nodal values of the solution at all the surrounding nodes from their latest

iterates. The test function q'i, corresponding to the node i, in equation (3.6) gives the

contribution of element ftt to the node i in the finite element approximation. Adding

similar equations from all the elements surrounding a node ND yields the nodal finite

element equation. Thus the equations corresponding to a single node, ND are

t /ND

where U t is replaced by U t for convenience. Thus U t is the conservation variable vector

at all the nodes of the element e, and the summation in equation (3.9) is over all elements

e surrounding the node ND. Equation (3.9) represents 5 equations at ND corresponding

to each of the 5 conservation equations. The ath conservation equation at ND can be

written as

=0

(3.10)
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where _ND) = _ with i corresponding to the local index of the global node ND in element

e. For all interior nodes ND, the surface flux integral in equation (3.10) vanishes. This

equation couples U at all the nodes surrounding the node NO. We develop a modified

symmetric non-linear Gauss-Seidel iteration to solve the coupled system of non-linear

equations directly without linearization. This leads to a matrix-free algorithm for the

solution.

For a particular time step n, the iteration is carried out as follows. During the iteration

process, we assume that all U's in the ath equation other than Ua are known from the

previous step of the iteration. We solve for AU= at node ND approximately by a modified

Gauss-Seidel iteration.

zxu , = +dU., (3.11)

for allnodes j where (m + 1)th iteratesare not available.

at nodes where AU (re+l)isavailable.At other nodes where only AU (m) isavailable,

._a(n+l) ,_ .t_,W=(U n __ AU(m) + dU)

oP (3.13)

The Jacobian matrices _ have inviscifl and viscous parts OU ' OU respectively.

The inviscid part is approximated by the spectral radii of the Jacobian matrices multiplied

by identity matrices.

off ln vis

OU
. (lul+., Ivl+ -, Iwl+ _)x -- sT_ (3.14)

where u, v, w are velocity components and a is the speed of sound. The viscous parts of

the Jacobian matrices axe not altered. For the iterative corrections dU's we make the

approximation,

dU=,j " dUa,(ND) (3.15)

for all the nodes j at which the latest iterates are not available, dU=,(ND) = dUa,i where

i is the local index corresponding to the global node ND. With this approximation, we

obtain explicit scalar expression for the iterative correction at the node ND, dUa,(ND).

- (.)
C dUa,ND = --Z_e-_=,ND (3.16)
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where

(3.17)

The superscript (*) corresponds to the iteration level (m) or (m+ 1) which ever is available

at the nodes surrounding the node (ND).

• j

• ow, ]
I

(3.1s)

( 1

I#D(j) = {
t 0

, for nodes j at iteration level m

, for nodes j at iteration level m + 1

(3.19)

The absolute value sign I' I in the middle integral indicates the absolute values of each of its

components. In defining the coefficient C, contributions of surface integrals do not exist for

all interior nodes and they are ignored for boundary nodes for simplicity. Approximations

made in C to simplify the algorithm while preserving numerical stability for large Courant

numbers, do not afl'ect the solution which is obtained by driving Res function to zero. One

iteration sweep starting from the initial node to the final node followed by a reverse sweep

makes one symmetric sweep. Typically two symmetric sweeps per time step are sufilcient

for obtaining time asymptotic solutions.

3.3 Surface Flux Computation

Volume integrals over quadrilateral brick elements are computed by isoparametric

transformations to a standard cube and by the use of two point Gaussian integration in

each direction. The details of such computations are available in many books on finite

element methods. Surface flux computation, however, is less known and the basic idea is

outlined below.

Suppose _,r/,_ are the localcoordinates and z,ll,z are global coordinates and we wish

to compute the surface fluxon the surface _ - 1 of an element.
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Q

O(=,y,z)

dS ---
- f=l

F (z(_,,1+ zx,7,d,

_(_,,7+ zx,s,_),
,(_,_+ zx,7,¢))

_=,P .adS= _=,._.d# (3.20)

d#= adS= O'PxGO

= (z(A_',y(A_',z(A,_) x (z,IAr/,I/,TAr/,z,TAr/) (3.21)

_ (o(_,_)o(_,=)o(x,_'_d_d,7
\a---_,,7)'a(_,_' a(¢,_))

_¢ F. d,_ can now be computed with Gaussian in andintegration directions, at C
=1

= 1. The values of F and the surface Jacobians are evaluated at the Gaussian points

on the surfaces of the elements, in contrast to the interior evaluation of volume integral

computations.

3.4 Artificial Dissipation

Though the scheme is linearly stable, non-linear numerical instabilities could arise

in strongly convective flows. Various artificial dissipation terms have been developed in

the literature to suppress the numerical instabilities. The features we seek for artificial

dissipation terms are that they only suppress numerical instabilities, they be smaller than

the real viscous terms, they are of higher order than the truncation terms and finally they

should be implementable in the code without excessive computation. For this purpose, we

choose the adaptive artificial dissipation terms of third order similar to those developed

by Jameson (1) and others. These terms are included in the finite element code. A listing

of the code is given in Appendix III.
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4. Test Calculations

4.1 Couette Flow

The first test problem is the simulation of a one dimensional shear flow under pressure

gradient. It has been computed with a uniform mesh of 2 x 6 x 2 linear (eight-node)

elements with the following boundary conditions.

u--v--w--Oat

u=Uo, v=w=Oat

w=0at zf0and

v=0atx-0and

It = 0 plane

It = 6 plane

z = 2 plane

z = 2 plane

A favorable pressure gradient of 0p = -1 is imposed. Fig. 4 shows the computed so-
0x

lution with wall velocity U0 = 3. This problem has a simple exact solution as given in

Schliching (6). The computed solution agrees with the exact solution and the two are indis-

tinguishable on the plot. For this simple problem, it takes very few time steps to reach a

steady state solution starting from uniform flow conditions. The table of global and local

correspondence of nodes, typical of finite element codes is also shown in Fig. 4.

4.2 Laminar Boundary Layer Over a Flat Plate

As another check case, laminar boundary layer over a flat plate has been computed

with a stretched mesh of 4 x 6 x 1 linear elements. In this problem the convective terms are

of the same order as some of the viscous terms. The finite element solution for a Reynolds

number of Re = 10 4, along with the boundary conditions and the mesh used are shown

in Fig. 5. The computed solution agrees qualitatively with the exact solution even with a

very coarse mesh. A converged solution can also be obtained for Re = 10 5.

4.3 Flow Over an Airfoil

The locally implicit scheme for two dimensional Navier-Stokes equations with finite

volume discretization is applied to compute airfoil flows. Calculations have been carried

out with the code and comparisons have been made with experimental results. High

Reynolds number viscous flows over an RAE 2822 airfoil have been computed from subsonic

to transonic Mach numbers. An algebraic turbulence model developed by Baldwin and

Lomax (5) has been incorporated into the code. A body conforming C-grid (128 x 32) for

an RAE 2822 airfoil is shown in Fig. 6. The mesh spacing normal to the airfoil is highly

stretched to resolve turbulent viscous layer. The spacing ranges from .00005 to 3 chord

lengths from inner to outer grid lines. Mach contours for turbulent flow at Mach number,

M = 0.6, angle of attack, _ = 2.57 and Reynolds number, Re = 6.3 × 106 are shown in

Fig. 7a. Fig. "/b shows the corresponding Cp plot where numerical results are compared
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with experimental values published by Cook, McDonald and Firmin (s). The agreement of

numerical and experimental values for Up is reasonable for a relatively coarse grid. Similar

Math contour and Cp plots are presented for transonic flow case with M = 0.725, a = 2.92

and Re = 6.5 x 10 6 in Figs. 8a and 8b.

4.4 Flow in a Turn-around Duct

As a test for the 3-D finite element code, flow in an axisymmetric turnaround duct is

computed at Mach number = 0.1. The schematic sketch of the turnaround duct is shown

in Fig. 9. The geometry used corresponds to a test rig at Rockwell International which is

shown in Fig. 10. A relatively coarse grid of 8 x 15 x 2 dements are chosen. Since the

flow is axisymmetric, 3 sectional planes with 2 elements in the cirmmfferential direction

are chosen and flow is set to be the same in each of the planes in the boundary conditions.

The grid in one of the constant-angle planes and the computed velocity vectors are shown

in Fig. 11 and a more detailed view of the velocity vectors in the bend region are shown

in Fig. 12. The flow features are qualitatively correct. But a finer grid computation is

necessary for quantitative comparisons with experimental results and it will be carried out

later.
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Fig. 12 Velocity Vectors in the Re Bend Region of the Tm'naround Duct
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APPENDIX I

The details of the Unsteady Compressible Navier-Stokes equations, which are used in

the finite element code are given below. The equations are written in conservation form as

{0u}__ + ¢. {_,} + ¢. {,e,} = {o}

where

{v}= p_ , {P_}= , {_'}= p_+pI
pw -r-v + l v-lpe + p) J
pc

2
= -k_T, rij = --gp6ijetk + 2peij£

o

e v' w')]P = (7- 1) [pe- _ (u s + +

The viscous and inviscid fluxes are given by

1

eii = $ (uij + vi,_)

{000}rll rn na pu s+p puv

f_ = rsl rn ra3 , ,_I = pvu pv = + p

(5 x 3) ral ras ra3 (5 x 3) pwu pwv
D, D2 D3 u(pe + p) v(p_ + p)

puw

pvw

pw s + P

w(pe + p)

p= (7- 1) [e- _(u°s + vs + ws)] (p = pRT), e = p_

• Sutherland's theory of viscosity:

P=PO

$1 = constant (= 110 °K for air)

T+SI )

• Properties of air at 20 '_C(= To) and atmospheric pressure (p, = 1 arm)
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Po = 1.205Kg/m3

po = 0.101325 x 106N/m 2

_0

R=

/.L0 --

k = 2.5 x lO-2(W/m -

Pr = 0.72

ot = 0.208

-y = 1.402

20 *C = 293 OK

P0 = 287 _-g. _. or Sec£: oK

17.9 x 10-6(Pa - Sec)

°K)

AUXILIARY RELATIONS

p = Pressure (N/m 2)

T = Temperature (°K)

Cp = Specific heat at constant pressure

Cv = Specific heat at constant volume

R = Gas constant (N. m/Kg- °K)

k = Thermal conductivity (W/rn - °K)

p0 = Reference viscosity (Pa -Sec.)

To = Reference temperature (°K)

p0 = Reference density (Kg/m 3)

p = pRT

7R

'7-1

R

7-1

k
tr = Thermal diffusitivity, =

pc,

Pr = Prandtl number = pCp
k

Uoo
Moo = Mach number =

Coo
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APPENDIX II

Details of Finite Element Equations

The details of finite element equations which approximate the Navier-Stokes equations

are given below. In equation (3.8) the residual {_e} has two parts. One is a volume

integral, 7_v and the other is a surface integral, _,.

where

The components of {7_} for _I which corresponds to a node I are given by

where

f O_z U2 0'_i U3 O'_z U,'_ dVn_ = - fn. \-'_-_ + T_ + Tz )

f. { ) u_u,o_,r_ =- (u_ o_ u_u_o_ +
. \U_ + p T= +'U_ oy u_

O_z

+'YF

+-Nf

+W

_.(_(_)_
U2o(_,))]
u,o(_,))]}

_Z

o(_))]+_

dV

• l_ u-T + \v. +'-/ --_+ u, o_

+T,
U3_(_))]+-_f
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where

g_=- ,I.O_ U_ + Ov U_

+_ -_o_w,/-"T" w,/J

+_Oz I_ _ ( O.Oz\U_/ ay \U_/

I $_w, +p)--m:
++++=- 1,,Lv,- . _-":_,_ o :_'_ o__(v,_

-_+'__;_ Fa, \v,/- _ ku,/ a,

-_'_ a-7 a+\v,/ o+ \u,./j

v,_ [_ (u+,_+_+(u_.,'_t-_'_ Ov O_ \U;/ O+ \Ut/J

2 U_Oqz 2 \Ut)-Oz\Ut]-Oz\Ux]J

- _"_-_ (u,_
- Vu, _ a, \v,./ _ \u,+/J

-_ O+ az \u+/ Ox \vl/J

"_ oz oz ov \u1/J

- -_v_ az \u,/- a, \ut/- _ \u:,+/j

flu J.-': +u_+u_,)1

For defining the components of {g.} we write

F.aS = ,_._dS= p. +t++

= p" \a(_.,,_)'a(_.,n)'0(¢,,o]



as derived in equation (11) of the last report (a), for a typical surface, say ( -- 1 of an

dement.

Denote

(a(v,_) o(_,,) o(,,v)_
(v,, v:,v,) = k-_,_' _-_,_' a(_,_))

Now the components of {R,} for @I which corresponds to a node I, for a typical surface

( = 1 of an element can be written as

t

Jo n"

_=,= _, ku, +p v,+ T +Tv_
u_+v.[+,(_,_(_)++(_)+_

v:o(_.))]+-[-,(_(_)++
u+

where

;V:mv, (_ ) v'mv._'= n.L u, +ku, +p v:+T,

+v_[+.(+,(_)+_ +

_'= o.t v, + u, +ku, +p v3
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where

le_.= (us + p)V_+ (us + p)V_ + _(v_
fl"

-g'N N

. [o o(.)]

_ v2

2 u, [,a(u,) a(u,) a(v,)]

.. [a+_OQ o+, OQ O+, OQ] _+,d_d_
-k L_ o_ + au % + o_ JJ

,[ ,, ]Q= E U+- TST(V_+ v#+ u_,)
Components of {T_s} for other surfaces of an element can be written similarly.

The coefficient C of equation (3.13) has volume integrals of the derivatives of viscous flux

terms. The details of those integrals axe given below.

Denote

L 0_o V_. • (ND),j

Subscript (ND) corresponds to the local index i of the global node ND in element e. These

integrals can be written as

L °.,v_= _ . a= a= u,

where

a¢,a % + gv

_(._) ,-r_ .o,.,.,]N -N Lo_ -%'_ 5,, ' etc.,
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t () ()[a+, a _ +4a+, a -_- + dv

j. ro....,(_) +o+.,(_) +,0+,_,(_)]_
/, ( ):v&='_ r,_, a ._. + +

- 37-



APPENDIX III

- 38 -



C

C

C

FILE NAME: COMPR3D VERS3; DATE: FEB. 22, 1988; LINES: 2066

C

C

C
C

t I

i FINITE-ELEMENT ANALYSIS OF FLOWS OF VISCOUS, COMPRESSIBLE i
J FLUIDS IN THREE-DIMENSIONALENCLOSURES. J

l i
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C
C

C
C

C

C

C

C

C

C

C
C

C

C

C

C
C

C

C

C

C

C

C
C

THIS PROGRAM IS DEVELOPED BY PROFESSORS J. N. REDDY OF

VIRGINIA POLYTECHNIC INSTITUTE AND K. C. REDDY OF THE

UNIVERSITY OF TENNESSEE SPACE INSTITUTE. THE PROGRAM IS

UNDER CONTINUOUS DEVELOPMENT DURING APRIL '86 TO PRESENT.

UNAUTHORIZED USE OF THE PROGRAM IS PROHIBITED.

DEVELOPED: APRIL 1986 - PRESENT

DESCRIPTION OF THE VARIABLES

CFL ......

ELXYZ ....
IBNDC ....

IORDER...

ISTART...

KELSUR...

KNDSUR...

MEN......

MNE....,,

NDF ......

NDSURF...

NELEM ....

•THE COURANT-FRIEDRICHS-LEVY NUMBER

.ARRAY OF ELEMENT COORDINATES OF NODES

.ARRAY OF BOUNDARY NODES FOR DIFFERENT

VARIABLES

.ORDER OF THE EQUATIONS TO BE SOLVED

.RESTART INDEX (1-RESTART; 0-NEW START)

.A TWO-DIMENSIONAL ARRAY THAT CONTAINS ELEMENT

NUMBER AND LOCAL NUMBER OF ITS SURFACE THAT

REQUIRES FLUX COMPUTATION:

KELSUR(I, 1)-GLOBAL ELEMENT NUMBER OF THE

GLOBAL I-TH SURFACE

KELSUR (I, 2 )-LOCAL SURFACE NUMBER OF THE
GLOBAL I-TH SURFACE

.A TWO-DIMENSIONAL (M BY 4) ARRAY WHICH CONTAINS

GLOBAL SURFACE NUMBERS SURROUNDING A NODE THAT

REQUIRES FLUX COMPUTATION. HERE M DENOTES THE

NUMBER OF NODES REQUIRING FLUX COMPUTATION:

KNDSUR(I,J)-GLOBAL NUMBER OF THE LOCAL J-TH
SURFACE ASSOCIATED WITH THE I-TH

BOUNDARY NODE THAT REQUIRES FLUX
COMPUTATION.

.MAXIMUM NUMBER OF ELEMENTS AT A NODE

.MAXIMUM NUMBER OF NODES PER ELEMENT

.NO. OF UNKNOWNS AT EACH NODE

.ARRAY CONTAINING THE SEQUENTIAL NUMBER OF THE
BOUNDARY NODES WHICH REQUIRE FLUX COMPUTATION
OR CONTAINING ZERO:

NDSURF(I)-0, IF NO SURFACES AROUND THE I-TH

NODE REQUIRES FLUX COMPUTATION.

NDSURF(I)-J, IF THE I-TH NODE REQUIRES FLUX

COMPUTATION; HERE J DENOTES THE SEQUENTIAL
NUMBER OF NODE I IN THE LIST OF SURFACES THAT

REQUIRE FLUX COMPUTATION.

.CONNECTIVITY MATRIX RELATING GLOBAL NODE TO



C

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C
C

C

C
C

C

ELEMENTS AROUND THE NODE:

NELEM(I,M)-GLOBAL ELEMENT NUMBER CORRESPONDING
TO THE M-TH LOCAL ELEMENT SURROUNDING GLOBAL

NODE I (MAXIMUM VALUE OF M IS 8).

NEM ....... NUMBER OF ELEMENTS IN THE MESH

NGP ....... NUMBER OF GAUSSIAN POINTS

NMSH ...... INDICATOR FOR GENERATING MESH:

NMSH-0, MESH INFORMATION IS TO BE READ

NMSH>0, MESH IS GENERATED BY THE PROGRAM

(ONLY FOR PRISMATIC AND TAD DOMAINS)

NNM ....... NUMBER OF NODES IN THE MESH

NODES ..... BOOLEAN MATRIX RELATING LOCAL NODES TO GLOBAL
NODES OF ELEMENTS :

NODES (N, J)-GLOBAL NODE NUMBER CORRESPONDING TO
THE J-TH LOCAL NODE OF ELEMENT N.

NSURF ..... TOTAL NUMBER OF SURFACES THAT REQUIRE
FLUX COMPUTATION

NTMSTP .... NO. OF TIME STEPS

U ......... ARRAY OF FIVE PRIMARY UNKNOWNS:

RHO, RHO*U, RHO*V, RHO*W, RHO*E

X,Y,Z ..... GLOBAL COORDINATES OF THE NODES

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

C

C
C

C

C

C

C

C

C

C

SUBROUTINES USED

BCUPDT .... UPDATES THE BOUNDARY CONDITIONS AT THE END OF

EACH ITERATION OR TIME STEP.

BNDRY ..... GENERATES ARRAY 'KNDSUR', CONTAINING SURFACES

REQUIRING FLUX COMPUTATION.

COEFNT .... GENERATES THE COEFFICIENT VALUES OF EACH

VARIABLE AT EACH NODE OF THE MESH.

DISPTN .... COMPUTES THE DISSIPATION MODEL.

DSFSUR .... COMPUTES THE DERIVATIVES OF THE SHAPE FUNCTIONS
AT GAUSS POINTS OF A SURFACE.

FLUXES .... COMPUTES FLUX FOR EACH VARIABLE AT EACH
OF THE MESH.

GCSURF.

GMETRY.

INTIAL.

INVDET.

MATMUL.

NODE

...GENERATES ARRAY 'GC', WHICH CONTAINS THE

DERIVATIVE OF X(I) W.R.T. XI(J).

...GENERATES ARRAYS 'SF', 'CNST', 'GDSF' AND 'VOL'
GLOBALLY.

...GENERATES INITIAL CONDITIONS ON BOUNDARY FACES.

...COMPUTES THE INVERSE OF THE JACOBIAN MATRIX.

...COMPUTES THE PRODUCT OF TWOMATRICES.



C
C
C
C
C
C
C
C

C
C
C
C
C
C

C
C
C
C
C
C

SHAPEL .... EVALUATES THE SHAPE FUNCTIONS AND THEIR DERIVA-

TIVES AT THE GUASS POINTS.

SURFGM .... COMPUTES COMPONENTS OF THE UNIT NORMAL AT
GAUSS POINTS OF EACH BOUNDARY SURFACE.

TADMSH .... GENERATES THE MESH ( X, Y AND Z COORDINATES AND

ARRAY 'NODES') FOR THE TURN-AROUND-DUCT (TAD).

1

DIMENS ION
2

3

4

5
6

7

8

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER [NNM-432, NEM-240, MXE-8, NGP'2, NDIM-3, NPE-8, NDF'5,
NBS'600)

X (NNM) ,Y (NNM) ,Z (NNM) ,TITLE (20) ,UOLD (NNM, 6) ,U (NNM, 6 ),

NODES (NEM, NPE) ,NELEM (NI%R4,MXE) ,ELXYZ (NPE, NDIM) ,E0 (NNM) ,
IORDER (NDF), DIS4 (NI_4, 6 ), DC4 (NNM), DELU (NPE, 6), AM[] (NNM),

GDSF (MXE, NPE, NGP, NGP, NGP, NDIM) ,GNORM (NDIM, NBS, NGP, NGP) ,

SF (NPE, NGP, NGP, NGP), CNST (MXE, NGP, NGP, NGP) ,EMU (NPE),
VOLND (NNM) ,VOL (MXE), DSURF (NDIM, NPE, 6, NGP, NGP) ,

ELU (NPE, 6), IEL (MXE), IBNDC (NNM, NDF) ,MINDX (NPE),

KELSUR (NBS, 2 ], KNDSUR (NBS, 4 ), NDSURF (NNM)

COMMON/GMT/SN22 (8, 8), SN33 (8,8), SN44 (8, 8), SN55 (8, 8)

COMMON/DTA/GAMA, AMU0, TEMPO, S i, R0, GPR, GAM1, CFL

DATA IORDER/1, 2, 3, 4, 5/
DATA IN, IT/5, 6/

I I

I P R E P R O C E S S 0 R I

I I

READ (5,2000) TITLE

READ (5, *) ISTART,NMSH, ITER, NTMSTP,CFL, RLXOUT,RLXIN

READ(5, *) AMU0,TEMP0,S1,R0,GAMA, PR, AMACH,DNST0
IF (NMSH. EQ. 0 )GOTO 5

CALL TADMSH (X, Y, Z, IBNDC, KELSUR, NODES, NSURF, NNM, NBS, NDF, NEM, NPE )

C

C

C

C
C

C

C

C

GOTO I0

READ (5, *] [ (NODES (I, J), J-l, 8), I-1, NEM)

READ (5, *) ( (NELEM (I, J) ,J-l, MXE) ,I-1, NNM)

READ (5, *) (X (I), Y (I), Z (I), I-1, NNM)

READ (5, *) ( (U (I, J), J-l, NDF), I-1, NNM)
READ (5, *) NSURF

IF (NSURF.EQ.0)GOTO 10

READ (5, *) ( (KELSUR (I, J) ,J-l, 2) , I-1, NSURF)

READ (5, *) ( (IBNDC (I, J) ,J'l, 5) , I-1, NNM)

E N D O F T H E I N P U T D A T A

OPEN THE OUTPUT FILE IN WHICH THE DATA IS TO BE STORED.

THE NAME OF THE FILE IS 'TEST' AND THE DATA IS STORED IN THE FORM

OF BINARY NUMBERS.

10 CONTINUE

IREC=30000

OPEN (UNIT-08, FILE-' TEST' ,STATUS'' NEW' ,ACCESS-' DIRECT' ,

# FORM'' UNFORMATTED' ,RECL'IREC, ACTION" READWRITE' )
IF (ISTART. EQ. I) THEN

OPEN (UNIT=07, FILE-' RSTART' ,STATUS'' OLD' ,ACCESS-' DIRECT' ,
# FORM-' UNFORMATTED' ,RECL-IREC, ACTION-' READWRITE' )



C
C
C

C

C

C

C
C

C

C

ENDIF

GENERATE ARRAY 'NELEM' USING ARRAY 'NODES'

DO 40 I=I,NNM

DO 15 L=I,MXE

15 NELEM(I, L) =0

ICNT=0

DO 30 J=I,NEM

DO 20 K--I,8

JK=NODES (J, K)

IF (I .NE.JK) GOTO 20
ICNT=ICNT+ 1

NELEM (I, ICNT)=J
IF (ICNT.EQ.MXE) GOTO 40

GOTO 30
20 CONTINUE

30 CONT INUE

40 CONTINUE

DEFINE FIXED PARAMETERS

NGP T--NGP*NGP *NGP

GAMI--GAMA- 1.0

GPR=GAMA/PR

INITIALIZE THE FLOW FIELD

NINIT=0

IF(ISTART .EQ. 0) THEN

C

CALL INTIAL (NDF, NNM, AMACH, AMU0, TEMP 0, S 1, R0, GAMA, PR, U, DNST0 )

CALL BCUPDT (NNM, GAMA, R0, TEMPO, U, DNST0 )

C

"w C

C

C
C

50

741

70

80

90

ELSE

READ (07, REC=I) NINIT, U
END IF

NTMSTP = NTMSTP + NINIT
NINIT=NINIT+I

DO 50 II=l,6

DO 50 JJ=I,NNM
UOLD (JJ, II) =U (JJ, II)

WRITE OUT INPUT DATA

WRITE (IT, 2600

WRITE (IT, 2500

WRITE (IT, 2600

WRITE (IT, 3000

WRITE (IT, 2100
WRITE (IT, 2200

WRITE (IT, 741) AMACH

FORMAT(10X, 'FREE STREAM MACH NUMBER

WRITE (IT, 3500)

DO 70 I = i, NEM

WRITE(IT,4000) I, (NODES(I,J),J=I,8)

WRITE (IT, 4500)

DO 80 I = i, NNM

WRITE(IT,4000) I, (NELEM(I,J),J=I,MXE)

WRITE (IT, 5500)
DO 90 I = I, NNM

WRITE (IT, 5000) I,X(I),Y(I) ,Z (I)

WRITE (IT, 6100)

DO i00 I=I,NNM

TITLE

AMU0,TEMP0,SI,R0,GAMA, PR, DNST0

ITER, NTMSTP,CFL, RLXOUT,RLXIN

=',El0.4)



C
C
C
C
C
C

C

I00 WRITE(IT,6500)I, (U(I,J) ,J=l, 5)
WRITE (IT, 6200)

DO 110 I=I,NNM
110 WRITE(IT, 4000) I, (IBNDC(I,J),J=I,5)

WRITE (IT, 6300)

WRITE(IT, 4000) ((KELSUR (I, J), J=l, 2), I-l, NSURF)

FIND MAX. NO. OF NODES PER EACH ELEMENT, COMPUTE ELEMENTAL

VOLUMES, SHAPE FUNCTIONS AND THEIR GLOBAL DERIVATIVES, AND
THE PRODUCT OF THE WEIGHTS AND THE DETERMINANT OF THE JACOBIAN

MATRIX FOR EACH GAUSS POINT OF EACH ELEMENT.

DO 155 ND=I,NNM

COMPUTE THE NUMBER OF ELEMENTS AROUND NODE 'ND'

DO 115 J=I,MXE

IF (NELEM (ND, J) .EQ. 0) GOTO 120
115 CONTINUE

J=MXE+I

120 NUMEL=J- 1

140

INITIALIZE THE ARRAYS

VOLND (ND) =0.0

DC4 (ND) =7*NUMEL

COMPUTE ARRAY 'IEL' WHICH CONTAINS LOCAL NODE COP_ TO NODE ND

DO 150 N=I,NUMEL
NEL=NELEM (ND, N)

DO 140 I--I,NPE

NI=NODES (NEL, I)

IF (NI.EQ.ND) IEL (N) =I

ELXYZ (I, 1 )=X (NI)

ELXYZ (I, 2) =Y (NI)

ELXYZ (I, 3) ='Z (NI)

C

CALL GMETRY (NNM, NEM, MXE, N, NPE, NGP, ELXYZ, SF, GDSF, CNST, VOL,

1 NDIM, IEL (N))

150 VOLND (ND) -VOLND (ND) +VOL (N)

WRITE(08, REC=ND) ND, CNST, GDSF, VOL, NUMEL, IEL, SN22,SN33,
1 SN44, SN55

* PRINT*, ND, CNST(I,I,I,I), GDSF (I, I, I, I, I, I) , VOL(1)

155 CONTINUE

C* WRITE(IT, 8000) (VOL (I), I=I,NEM)

C

CALL BNDRY (NBS, NEM, NNM, NPE, NSURF, NODES, KELSUR, ND SURF, KND SUR)

CALL DSFSUR (DSURF, NGP, NPE, NDIM)

WRITE (IT, I000)

WRITE (IT, 4000) ((KELSUR (I, J), J=l, 2), I=l, NSURF)

WRITE (IT, 4000) (NDSURI _ (I), I=l, 16)

WRITE (IT, 4000) ( (KNDSUR(I, J), J--l, 4), ImI,NSURF)

160

DO 180 NDS=I,NSURF

KE=KELSUR (NDS, I)
KI=KELSUR (NDS, 2)

DO 160 I=I,NPE

NI=NODES (KE, I)

ELXYZ (I, I) =X (NI)

ELXYZ (I, 2) =Y (NI)
ELXYZ (I, 3 )=Z (NI)

180 CALL SURFGM(KI,NDS,ELXYZ,DSURF, GNORM, NBS,NGP,NPE,NDIM)



C
C
C
C
C
C
C
C
C

190

I P R 0 C E S S O R I
I I

BEGIN THE DO-LOOP ON THE NUMBER OF TIME STEPS TO COMPUTE THE SOLN

ERROR=0.0

DO 800 ITMSTP=NINIT,NTMSTP

WRITE(IT,6000) ITMSTP

DO 190 I=I,NNM

TEMP=U(I,6)/R0/U(I,I)

AMU(I)=AMU0*((TEMP/TEMP0)**I.5)*((TEMP0+SI)/(TEMP+SI))

CALL SUBROUTINE 'DISPTN' TO COMPUTE GLOBAL ARTIFICIAL DISSIPATION

C

CALL DISPTN (NNM, NEM, MXE, X, Y, Z, U, DC4, NODES, NELEM, DIS 4, NPE,
* E0, VOLND)

C

C

C

C

C

C

SYMMETRIC NONLINEAR GAUSS-SEIDEL ITERATION LOOP BEGINS HERE

ITMAX=2 * ITER

DO 700 ITR=I, ITMAX

IF (MOD (ITR, 2 ). EQ. 1 )THEN
NBEGIN=I

NEND =NNM

NINC=I

ELSE

NBEGIN=NNM

NEND=I
NINC=-I

ENDIF

WRITE (IT, 4007) ITR, ITMAX

BEGIN THE DO-LOOP ON THE NUMBER OF NODES TO COMPUTE THE SOLUTION

DO 600 ND=NBEGIN, NEND, NINC

WRITE(IT, 4006)NBEGIN, NEND,NINC, ND

COMPUTE THE NUMBER OF ELEMENTS (NUMEL) SURROUNDING A NODE

READ(08, REC=ND) ID, CNST, GDSF, VOL,NUMEL, IEL, SN22,SN33,

1 SN44, SN55

IF (ID.NE.ND) THEN

PRINT *, 'ERROR IN THE READ OF FILES'
STOP
ENDIF

NS TART= 1

NLAST=5

INCR=I

DO 500 LOOP=l, 1

DO-LOOP ON THE NUMBER OF CONSERVATION EQUATIONS BEGINS HERE

DO 400 NEQ=NSTART,NLAST, INCR

WRITE (IT, 4004 )NSTART, NLAST, INCR, NEQ, LOOP

LEQ=IORDER (NEQ)

IF (IBNDC (ND, LEQ) .EQ. 0) GOTO 400

DO-LOOP ON NUMBER OF ELEMENTS SURROUNDING NODE 'ND' BEGINS HERE



C
C
C

260
C
C
C
C

GO.M=0.0
GCKVlS=0.0
C-CKINV=0.0

TCOEF=0.0

TRES=0.0

TFLX=0.0

DO 300 N=I,NUMEL
WRITE (IT, 4003) NUMEL, N

NEL=NELEM (ND, N)

TRANSFER GLOBAL INFORMATION TO ELEMENT 'NEL'

DO 260 I=I,NPE

MINDX (I )=0

NI=NODES (NEL, I)

EMU (I) =AMU (NI)
IF (NINC.EQ. 1 .AND. NI.GE.ND)MINDX (I) =I

IF(NINC.EQ.-I .AND. NI.LE.ND)MINDX(I)=I

DO 260 II=l,6

DELU (I, II) =U (NI, II) -UOLD (NI, II)

ELU (I, II) =U (NI, II)

CALL SUBROUTINE 'COEFNT' TO COMPUTE THE COEFFICIENTS FOR THE EQN

C

CALL COEFNT (IEL (N), LEQ, N, NPE, NEM, NGP, ELU, SF, GDSF, CNST, VOL, RES,

CM, EMU, DELU, MINDX, CKINV, NDF, NDIM, NGPT, MXE)

GOTO (271,272,273,274,275) ,LEQ
271 C-CKVIS=0.0

GOTO 276

272 DO 282 JI=I,NPE
282 GCKVIS=GCKVIS+SN22 (N, Jl) *MINDX (Jl)

GOTO 276

273 DO 283 JI=I,NPE

283 GCKVIS=GCKVIS+SN33 (N, Jl) *MINDX (Jl)
GOTO 276

274 DO 284 JI=I,NPE
284 C-CKVIS=C-CKVIS+SN44 (N, Jl) *MINDX (Jl)

GOTO 276

275 DO 285 JI=I,NPE

285 C-CKVIS=GCKVIS+SN55 (N, Jl) *MINDX (Jl)
276 CONTINUE

GCM--GCM+CM

GCKINV=GCKINV+CKINV
300 TRES=TRES+RES

GCKINV=GCKINV* 8.0/NUMEL

GCKVIS--GCKVIS*AMU (ND)/U (ND, i)

IF (LEQ.EQ. 5) GCKVIS=GCKVIS*GPR
TCOEF=GCM+DABS (GCKINV) +C-CKVIS

TCOEF=TCOEF+DC4 (ND)

IF (NDSURI _ (ND) .EQ. 0) GOTO 340

DO 335 J--l,4

KGI=KNDSUR (NDSURF (ND), J)

IF (KGI .EQ. 0) GOTO 340

KI=KELSUR (KGI, 2)

KL=KELSUR (KGI, I)

DO 310 II=I,NPE
IF (NELEM (ND, II) .EQ.KL) THEN

NI.=II
GOTO 315

ENDIF

310 CONTINUE

315 DO 330 II=I,NPE
EMU (Ii) =AMU (NODES (KL, I1) )

DO 320 JI=I,NDF



C

320 ELU(Ii, Jl) =U(NODES(KL,If), Jl)
330 IF (NODES(KL,Ii) .EQ.ND)LI=II

C

5O0

*9999
6OO

C
C
C

CALLFLUXES(LI, LEQ,NI, NPE,NGP,ELU,SF,GDSF,GNORM,K1,KGI,FLX,
I EMU,MXE,NBS,NDF,NDIM)

335 TFLX=TFLX+FLX
340 CONTINUE

IF (LEQ.NE.2)GOTO350
ERROR0=ERROR
ERROR=DMAXl(ERROR0,DABS(TRES+TFLX))
IF (ERROR.GT.ERROR0)MAXND=ND

350 CONTINUE
DIS4(ND,LEQ)=0.0
DU=-(TRES+TFLX-DIS4(ND,LEQ))/TCOEF
U(ND,LEQ)=U(ND,LEQ)+DU*RLXIN
U(ND,6)=GAMI* (U(ND,5)-0.5* (U(ND,2)*U(ND,2)+U(ND,3)*U(ND,3)+

• U(ND,4)*U(ND,4)) /U (ND, I) )

WRITE (IT, 7500) LEQ, ND, TRES, TFLX, TCOEF, U (ND, LEQ)
400 CONTINUE

NTEMP=NSTART

NSTART=NLAST
NLAST=NTEM_

INCR=- 1 * INCR

CONT INUE

WRITE(6,9999) ND, (U(ND, LI),LI=I,6)

FORMAT (I5, 6E15.7)
CONTINUE

END OF THE COMPUTATION FOR ALL NODES IN THE SWEEP

NTEMP=NBEGIN

NBEGIN=NEND

NEND=NTEMP

NINC=-I*NINC

RESET THE VALUES AT INFLOW, OUTFLOW AND RADIAL SYMMETRY PLANES

CALL BCUPDT(NNM, GAMA, R0,TEMP0,U, DNST0)

CONTINUE700

C

C
C

730

C*

C

C

RELAXATION OF THE UPDATED SOLUTION AND COMPUTATION OF PRESSURE

DO 720 II=i,5

DO 720 JJ=I,NNM
U (JJ, II )=UOLD (JJ, II) +RLXOUT* (U (JJ, II) -UOLD (JJ, II) )

720 UOLD (JJ, II) =U(JJ, II)

DO 730 JI=I,NNM

U (Jl, 6) =GAMI* (U (Jl, 5) -0.5* (U (Jl, 2) *U (Jl, 2) +U (Jl, 3) *U (Jl, 3) +

* U(JI, 4) *U (Jl, 4) )/U (Jl, I) )

UOLD (Jl, 6) =U (Jl, 6)
WRITE (IT, 7000) ERROR, MAXND

DO 750 I=I,NNM

750 WRITE(IT, 6500)I, (U(I,J),J=I,6)
800 CONTINUE

OPEN (UNIT=09, FILE=' ROLD', STATUS=' NEW', ACCESS=' DIRECT',

* FORM=' UNFORMATTED' ,RECL=IREC, ACTION =' READWRITE' )

WRITE (09, REC=I )NTMSTP, U

STOP

F O R M A T S



I000 FORMAT
2000FORMAT
2100FORMAT

2
3
4
5
6
7

(5X,'ARRAYS:KELSUR,NDSURFANDKNDSUR:', /)
(20A4)

(/,2X,'P R O B L E M D A T A:',/

/, 5X, 'REFERENCE VISCOSITY (AMU0) ............ =' ,El2 .4,

/,5X,'REFERENCE TEMPERATURE (TEMPO) ......... =',E12.4,
/, 5X, 'SUTHERLANDS CONSTANT (SI) ............. =' ,El2.4,

/,SX,'GAS CONSTANT (R0) ..................... =',E12.4,

/, 5X, 'RATIO OF SPECIFIC HEATS (GAMA) ........ --',El2.4,

/, 5X, 'PRANDTL NUMBER (PR) ................... =' ,El2 .4,

2

3

4

5

6

2500 FORMAT

2600 FORMAT

3000 FORMAT

3500 FORMAT

4000 FORMAT
4002 FORMAT

4003 FORMAT

4004 FORMAT

4005 FORMAT

4006 FORMAT

4007 FORMAT

4008 FORMAT

4500 FORMAT

5000 FORMAT

5500 FORMAT
6000 FORMAT

6100 FORMAT

6200 FORMAT

8 /, 5X, 'REFERENCE DENSITY (DNST0) ............. =', El2.4, / )

2200 FORMAT (/,2X,'P A R A M E T E R S O F A P P R 0 X. :',/,

/, 5X, 'NUMBER OF ITERATIONS PER TIME STEP .... =', I3,

/, 5X, 'NUMBER OF TIME STEPS (NTMSTP) ......... =', I3,

/,5X,'THE C F L NUMBER (CFL) .............. z',E12.4,

/, 5X, 'OUTER RELAXATION PARAMETER (RLXOUT)...=' ,El2.4,

/, 5X, ' INNER RELAXATION PARAMETER (RLXIN) .... =', El2.4,/)

(/,15X,'O U T P U T F R 0 M P R O G R A M COMPR3D',/)
(80 (' -' ) )

(IHI, 20A4)

(/,2X,'C 0 N N E C T I V I T Y M A T R I X:',/,

2X, ' (ELEMENT-TO-NODES) ',/)
(I5, 2X, III5)

(5X,'DO-LOOP 200 :',/,915)

(5X,'DO-LOOP 300 :',/,915)

(5X,'DO-LOOP 400 :',/,915)
(5X,'DO-LOOP 500 :',/,915)

(5X,'DO-LOOP 600 :',/,915)

(5X,'DO-LOOP 700 :',/,915)

(5X,'DO-LOOP 800 :',/,915)

(/,2X,'C 0 N N E C T I V I T Y A R R A Y :',/,
2X, ' (NODE-TO-ELEMENTS) ',/)

(I5, 3 (2X, El2.4) )

(/,2X,' (X,Y,Z)-C O O R D I N A T E S 0 F N 0 D E S:',/)
(/,2X,'T I M E S T E P =',I5,/)

(/,2X,'I N I T I A L F I E L D V A L U E S:',/)

(/,2X,'SPECIFIED NODAL QUANTITIES (=0, SPECIFIED) :',/)

6300 FORMAT (/,2X,'ELEMENT NUMBERS AND THEIR SURFACES THAT REQUIRE FLUX
* COMPUTATION :' , / )

6500 FORMAT (I5,6E12.4)

7000 FORMAT (/,5X,'MAX. ERROR =',EI2.4,/,5X,'NODE NUMBER =',I5,/)

7500 FORMAT (/,5X,'LEQ =',I2,2X,'NODE =',I4,2X,'RESIDUAL=,,EI2.4,2X,
* 'FLUX=' ,El2.4,2X, 'TCOEF=' ,El2.4, 2X, 'SOLN.=' ,El2.4)

8000 FORMAT (5X, 'VOLUME OF EACH ELEMENT :' ,/, 5X, 6E12 .4 )
END

C

C

C

C

C

C
C

SUBROUTINE BCUPDT (NNM, GAMA, R0, TEMPO, U, DNST0 )

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/MSH/ARCANG, NX, NY, NZ, NXl, NX2, NX3

DIMENSION U (NNM, 6)

DEFINE FIXED PARAMETERS

ANX=0.0

ANY=DS IN (0.5*ARCANG)

ANZ=DCOS (0.5*ARCANG)
GAMI=GAMA- I. 0
NXX--NX+I

NYY--NY+I
NZZ=NZ+I

SET THE NORMAL VELOCITY TO ZERO AT THE MIDPLANE

DO 30 IX=I,NXX



C
C
C

C
C
C

C

C

DO30 IY=I,NYY
ND=(IX-I )*NYY*NZZ+NYY+IY
U(ND,3)=U(ND,3)* (i. 0-ANY*ANY)-U(ND,4)*ANY*ANZ
U (ND, 4) =-U (ND, 3) *ANY*ANZ+U (ND, 4) * (I. 0-ANZ*ANZ)

U (ND, 5) =U (ND, 6)/GAMI+0.5" (U (ND, 2) *U (ND, 2) +U (ND, 3) *U (ND, 3)+

• U (ND, 4) *U (ND, 4) ) /U (ND, I)

RESET THE VALUES ON PARALLEL PLANES TO THOSE ON THE MIDPLANE

3O

NDI:ND-NYY
ND2=ND+NYY

U (NDI, 1 )=U (ND, 1 )

U (NDI, 2) =U (ND, 2)

U (NDI, 3) =U (ND, 3) *ANZ-U (ND, 4) *ANY

U (NDI, 4) =U (ND, 3) *ANY+U (hiD,4) *ANZ

U (NDI, 5) -U (ND, 5)
U (NDI, 6) --U (ND, 6)

U (ND2, I) =U (ND, 1)

U (ND2,2) =U (ND, 2 )

U (ND2, 3)=U (ND, 3) *ANZ+U (ND, 4) *ANY

U (ND2, 4)=-U (ND, 3) *ANY+U (ND, 4) *ANZ

U (ND2, 5) =U (ND, 5)

U (ND2, 6) =U (ND, 6)
CONTINUE

RESET THE VALUES AT OUTFLOW BOUNDARY

DO 40 IZ=I,NZZ
DO 40 IY=I,NYY

ND = IY + (IZ-I)*NYY + NX*NYY*NZZ

U(ND, 6) =DNST0*R0*TEMP0*0.98

U (ND, 5) =U (ND, 6)/GAMI+0.5* (U (ND, 2) *U (ND, 2) +U (ND, 3) *U (ND, 3) +
* U(ND, 4) *U (ND, 4) )/U (ND, i)

40 CONTINUE

SET CONSTANT TEMPERATURE ON THE WALLS

DO 60 KD = I, NX-I

NDI = (NYY*NZZ)*KD + 1

DO 50 JZ = I, NZZ
ND = NDI + (JZ-I) *NYY

U (ND, 6) =U (ND, 5 ) *GAMI

U (ND, I)=U (ND, 6) / (R0*TEMP0)

5O

NN = ND + NY

U (NN, 6) =U (NN, 5) *GAMI

U (NN, I)--U (NN, 6) / (R0*TEMP0)
CONT INUE

60 CONTINUE

RETURN

END

I0

20

SUBROUTINE BNDRY (NBS, NEM, NNM, NPE, NSURF, NODES, KELSUR, NDSURF, KNDSUR)
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION NODES (NEM, NPE) ,KELSUR (NBS, 2) ,KNDSUR (NBS, 4) ,NDSURF (NNM) ,
* K(4)
NCOUNT= 0

DO i0 I=I,NNM
NDSURF (I) =0

DO 20 L=I, 4

DO 20 J=I,NSURF

KNDSUR (J, L) =0



30

4O

50

6O

70

8O

90

I00
ii0

120
150

DO150 I=I,NSURF
KEL=KELSUR(I, I)
KSRF=KELSUR(I, 2)
GOTO(30,40,50,60,
K(I)=NODES(KEL,i)
K(2)=NODES(KEL,4)
K(3)=NODES (KEL, 8)

K(4) =NODES (KEL, 5)
GOTO 90

K (1 )=NODES (KEL, 2 )

K (2) =NODES (KEL, 3)

K (3) =NODES (KEL, 7)

K (4) =NODES (KEL, 6)
GOTO 90

K (1 )=NODES (KEL, 1 )

K (2) =NODES (KEL, 5)

K (3)=NODES (KEL, 6)

K (4) =NODES (KEL, 2)
GOTO 90

K (i) =NODES (KEL, 4)
K (2)=NODES (KEL, 8)

K(3) =NODES (KEL, 7)

K(4) =NODES (KEL, 3)
GOTO 90

K(1) =NODES (KEL, I)
K(2) =NODES (KEL, 2)

K(3) =NODES (KEL, 3)

K(4) =NODES (KEL, 4)
GOTO 90

K (I) =NODES (KEL, 5)

K (2)=NODES (KEL, 6)

K (3) =NODES (KEL, 7)

K(4) =NODES (KEL, 8)
CONT INUE

70,80) ,KSRF

DO 120 J=l,4

IF (NDSURF (K (J)) .EQ. 0) THEN

NCOUNT=NCOUNT+ I

NDSURF (K (J)) =NCOUNT

KNDSUR (NCOUNT, 1 )=I
ELSE

NC=NDSURF (K (J))

DO 100 JJ=2,4

IF (KNDSUR (NC, JJ) .EQ. 0) THEN

KNDSUR (NC, JJ) =I
GOTO Ii0
ENDIF

CONTINUE

CONTINUE

ENDIF

CONTINUE

CONTINUE

RETURN
END

SUBROUTINE COEFNT (IEL, LEQ, N, NPE, NEM, NGP, ELU, SF, GDSF, CNST, VOL, RES,

* CM, EMU, DELU, MINDX, CKINV, NDF, NDIM, NGPT, MXE )

C
C

C

C

C

C

ELU(I,J) ...... ELEMENT SOLUTION VECTOR (J-TH COMPO. AT I-TH NODE)

SF(I,...) ..... SHAPE FUNCTION ASSOCIATED WITH THE I-TH NODE
GDSF (N, J, . .I) .GLOBAL DERIVATIVE OF J-TH SHAPE FUNCTION

WITH RESPECT TO X(I) COORDINATE

C



C

C
C
C

C

THIS IS A VECTORIZEDVERSIONOFTHESUBROUTINECOEFNT

IMPLICITREAL*8(A-H,O-Z)
DIMENSIONSF(NPE,NGP,NGP,NGP),CNST(MXE,NGP,NGP,NGP),VOL(MXE),

2 GDSF(MXE,NPE,NGP,NGP,NGP,NDIM),ELU(NPE,6), EMU(NPE),
3 U(6,8) ,DU(7,3, 8),DUI(7,3, 8),UI (6,8) ,DELU(NPE,6),
4 III(8),JJJ(8),KKK(8),F(8,8),DF(9,9,3),MINDX(NPE),
5 DQI(3) ,C(8), GMU(8)
COMMON/DTA/GAMA,AMU0,TEMPO,S1,R0,GPR,GAMI,CFL

DATAIII/I,2,1,2,1,2,1,2/
DATAJJJ/l,l,2,2,1,1,2,2/
DATAKKK/I,I,I,I,2,2,2,2/

CM=0.0
CK=0.0
CKINV=0.0
DLNGTH=0.0
RES=0.0
FMAS=0.0
SPEED=DSQRT(ELU(IEL, 6)*GAMA/ELU(IEL, I) )

DOI0 L=I,NGPT

C(L) = CNST(N, III(L),JJJ(L),KKK(L))
DO 10 I=I,NPE

F(L,I) = SF(I, III(L),JJJ(L),KKK(L))

DF(L,I,I) = GDSF(N,I,III(L),JJJ(L),KKK(L),I)

DF(L,I,2) -- GDSF(N,I,III(L),JJJ(L),KKK(L),2)

i0 DF(L,I,3) = GDSF(N,I,III(L),JJJ(L),KKK(L),3)

TSPEED=SPEED+ (DABS (ELU (IEL, 2) )+DABS (ELU (IEL, 3) )+DABS (ELU (IEL, 4) ) )/
* ELU (IEL, I)

DT=CFL* (VOL (N) ** (i./3. ))/TSPEED

EVALUATE THE SOLUTION AND ITS DERIVATIVES AT THE GAUSS POINT

DO 40 J=I,NDF

DO 40 L=I,NGPT
SUM1=0.0

SUM2=0.0

SUM3=0.0
SUM4=0.0

DO 30 I=I,NPE

SUMI=SUMI+DF (L, I, I) *ELU (I, J)

SUM2=SUM2+DF (L, I, 2) *ELU (I, J)
SUM3=SUM3+DF (L, I, 3) *ELU (I, J)

30 SUM4=SUM4+F (L, I) *ELU (I, J)
DU (J, i, L) =SUM1

DU (J, 2, L) =SUM2

DU (J, 3, L) =SUM3
40 U (J, L) =SUM4

DO 50 J=2,4

DO 50 L=I,NGPT

U1 (J, L) =U (J, L)/U (I, L)

DUI (J, I, L) = (DU (J, I, L)-UI (J, L) *DU(I, i, L) )

DUI (J, 2, L) = (DU (J, 2, L) -UI (J, L) *DU (1,2, L) )

50 DUI (J, 3, L) = (DU(J, 3, L)-UI (J, L) *DU (i, 3, L) )

COMPUTE MASS MATRIX TIMES DELU TERM

60
70

DO 70 JI=I,NPE

DO 60 L=I,NGPT

PROD=F(L, IEL)*F(L, JI)*C(L)
CM=CM+PROD*MINDX(JI)

FMAS=FMAS+PROD*DELU(JI,LEQ)
CONTINUE



C
C

C

COMPUTE INVISCID COEFFICIENT FOR INNER ITERATION

DO 90 L=I,NGPT

CKINV=CKINV+ (DABS (DF (L, IEL, i) * (DABS (UI (2, L) )+SPEED) )

1 + DABS (DF (L, IEL, 2) * (DABS (UI (3, L) ) +SPEED) )

2 + DABS (DF (L, IEL, 3) * (DABS (UI (4,L)) +SPEED) )) *C(L)

3 *F (L, IEL)
90 CONTINUE

COMPUTE RESIDUES ETC FOR A CONSERVATION EQUATION

GOTO(100,200,300,400,500),LEQ

100 DO ii0 L=I,NGPT

RES=RES- (DF (L, IEL, I) *U(2, L) +DF (L, IEL, 2) *U (3, L)

1 +DF (L, IEL, 3) *U (4, L) ) *C (L)
110 CONTINUE

GOTO 600

200 DO 240 L=I,NGPT
SUM=0.0

DO 220 I=I,NPE

220 SUM=SUM+EMU (I) *F (L, I)

240 GMU (L)-_SUM

DO 260 L=I,NGPT
U22=U (2, L) *U(2, L)

U23=U (2, L) *U (3, L)
U24=U (2, L) *U (4, L)

U33=U (3, L) *U (3, L)

U44=U (4, L) *U (4, L)

PRES--GAMI* (U (5, L) -0.5* (U22+U33+U44)/U(I, L) )

AMU23=2.0*GMU (L)/3.0
AMU43=2.0*AMU23

RES=RES-C (L) * ( (U22+PRES*U (i, L) +AMU23* (-2.0*DUI (2, i, L)

1 +DUI (3, 2, L) +DUI (4,3, L) ) ) *DF (L, IEL, i)
2 + (U23-GMU (L) * (DUI (3, I, L) +DUI (2, 2, L) )) *DF (L, IEL, 2)

3 + (U24-GMU (L) * (DUI (4, i, L) +DUI (2, 3, L) ) ) *DF (L, IEL, 3) )/U (I, L)
260 CONTINUE

GOTO 6O0

300 DO 340 L=I,NGPT
SUM=0.0

DO 320 I=I,NPE

320 SUM=SUM+EMU (I) *F (L, I)

340 GMU (L) =SUM

DO 360 L=I,NGPT

U22=U (2, L) *U (2, L)

U23=U (2, L) *U (3, L)

U33=U (3, L) *U (3, L)
U34=U (3, L) *U (4, L)

U44=U(4, L) *U (4, L)

PRES=GAMI* (U (5, L) -0.5* (U22+U33+U44)/U (I, L) )

AMU23=2.0*GMU (L)/3.0
AMU43=2.0*AMU23

RES=RES-C (L) * ( (U33+PRES*U (i, L) +AMU23* (-2.0*DUI (3,2, L)

1 +DUI (4, 3, L) +DUI (2, i, L) ) ) *DF (L, IEL,2)
2 + (U34-GMU (L) * (DUI (4, 2, L) +DUI (3, 3, L) ) ) *DF (L, IEL, 3)

3 + (U23-GMU (L) * (DUI (2,2, L) +DUI (3, 1, L) ) ) *DF (L, IEL, i) )/U (1, L)

360 CONTINUE

GOTO 600

400 DO 440 L=I,NGPT
SUM=0.0

DO 420 I=I,NPE
420 SUM=SUM+EMU(I) *F(L, I)

440 GMU (L) -=SUM



DO460 L=I,NGPT
U22=U(2, L) *U (2, L)

U24=U(2, L) *U (4, L)

U33=U (3, L) *U (3, L)

U34=U(3, L) *U (4, L)

U44--U (4, L) *U (4, L)

PRES=GAMI * (U (5, L) -0.5" (U22+U33+U44)/U (I, L) )
AMU23=2.0*GMU (L)/3.0

AMU43=2.0*AMU23

RES=RES-C (L) * ( (U44+PRES*U (I, L) +AMU23* (-2.0*DUI (4, 3, L)

1 +DUI (2, I, L) +DUI (3, 2, L) ) ) *DF (L, IEL, 3)

2 + (U24-GMU (L) * (DUI (2,3, L) +DUI (4, i, L) )) *DF (L, IEL, I)

3 + (U34-GMU (L) * (DUI (3, 3, L) +DUI (4, 2, L) )) *DF (L, IEL, 2) )/U (i, L)
460 CONTINUE

GOTO 600

500

520

540

DO 540 L=I,NGPT
SUM=0.0

DO 520 I=I,NPE

SUM=SUM+EMU (I) *F (L, I)

GMU (L) =SUM

DO 560 L=I,NGPT
U22=U (2, L) *U (2, L)

U33=U (3, L) *U (3, L)

U44=U (4, L) *U (4, L)

PRES=GAMI* (U (5, L) -0.5* (U22+U33+U44)/U (I, L) )
AKH=GMU (L) *GPR

AMU23=2.0*GMU (L) /3.0
AMU43=2.0*AMU23

DQI (i) =DU (5, I, L) -UI (2, L) *DU (2, I, L) -UI (3, L) *DU(3, i, L)

2 -Ul (4, L) *DU(4, I, L) +DU (I, i, L) * (-U (5, L)/U(l, L)

3 +Ul (2, L) *Ul (2, L) +Ul (3, L) *UI (3, L) +Ul (4, L) *Ul (4, L) )

DQI (2) =DU(5, 2, L) -Ul (2, L) *DU(2, 2, L) -UI (3, L) *DU(3, 2, L)

2 -Ul (4, L) *DU (4,2, L) +DU (i, 2, L) * (-U (5,L)/U(I, L)
3 +Ul (2, L) *Ul (2, L) +Ul (3, L) *Ul (3, L) +Ul (4, L) *Ul (4, L) )

DQI (3) =DU(5, 3, L) -UI (2, L) *DU (2, 3, L) -UI (3, L) *DU (3, 3, L)

2 -UI(4,L)*DU(4,3,L)+DU(I, 3,L)*(-U(5,L)/U(I,L)

3 +Ul (2, L) *Ul (2, L) +UI (3, L) *Ul (3, L) +Ul (4, L) *Ul (4, L) )

560

600

RESI = (U(2,L)*(U(5,L)+PRES)-AMU23*UI(2,L)*(2.0*DUI(2,I,L)
2 -DUI (3, 2, L)-DUI (4, 3, L) )-GMU(L) * (UI (3, L) * (DUI (2,2, L)

3 +DUI (3, I, L) )+UI (4, L) * (DUI (2, 3, L) +DUI (4, i, L) ) )

4 -AKH*DQI (i)) *DF (L, IEL, i)
RES2 = (U(3,L)*(U(5, L) +PRES) -AMU23*UI (3, L) * (2 .0*DUI (3, 2, L)

2 -DUI (4, 3, L) -DUI (2, I, L) )-GMU (L) * (UI (4, L) * (DUI (3, 3, L)

3 +DUI (4,2, L) )+UI (2, L) * (DUI (3, i, L) +DUI (2,2, L) ) )

4 -AKH*DQI (2)) *DF (L, IEL, 2)

RES3 = (U(4,L)*(U(5, L) +PRES) -AMU23*UI (4, L) * (2 .0*DUI (4, 3, L)

2 -DUI (2, I,L) -DUI (3,2, L) )-GMU (L) * (UI (2,L) * (DUI (4, I, L)
3 +DUI (2,3, L) ) +UI (3, L) * (DUI (4, 2, L) +DUI (3, 3, L) ))

4 -AKH*DQI (3)) *DF (L, IEL, 3)
RES = RES - (RESI+RES2+RES3)*C (L)/U(I,L)

CONTINUE

CONTINUE

RES=RES+FMAS/DT

CM=CM/DT
RETURN

END

SUBROUTINE DISPTN (NNM, NEM, MXE, X, Y, Z, U, DC4, NODES, NELEM, D I S4,

* NPE, E0, VOLND)
IMPLICIT REAL*8 (A-H,O-Z)



C

20

30

40
50

6O
C
C
C

i00
120
130

140

150

DIMENSIONX(NNM),Y(NNM),Z(NNM),U(NNM,6), NODES (NEM, 8 ), E0 (NNM),

2 NELEM (NNM, MXE) ,DIS4 (NNM, 6), VOLND (NNM) ,DC4 (NNM)

DATA KAPA2, KAPA4/0. I, 0.01/

DO 50 IE=I, 6

DO 40 ND=I,NNM
SUME0=0.0

DO 20 NE=I,MXE

IF (NELEM(ND,NE) .EQ.0)GOTO 30

NEL=NELEM (ND, NE)

DO 20 NP=I,NPE

NI=NODES (N-EL,NP)
SUME0=SUME0+U (NI, IE) -U (ND, IE)

NE=MXE+I

CONTINUE

DC4 (ND) =7* (NE-I)

DIS4 (ND, IE) =SUME0

CON T INUE

DO 60 ND=I,NNM

DIS4 (ND, 5) =DIS4 (ND, 5) +DIS4 (ND, 6)

DIS4 (ND, 6)=ABS (DIS4 (ND, 6) )/U (ND, 6) *KAPA2

COMPUTE THE FOURTH-ORDER DISSIPATION

DO 150 IE=I,5

DO 140 ND=I,NNM

SUMDC=0.0

E0 (ND) =0.0
SUMD0=0.0

ISW=I

IF(DIS4(ND,6) .GT.KAPA4) ISW=0

DO 120 NE=I,MXE

NEL=NELEM (ND, NE)
IF (NEL.EQ. 0) GOTO 130

DO 100 NP=I,NPE

NI=NODES (NEL, NP )

IF (NI .EQ.ND) GOTO i00

XL=X (NI) -X (ND)

YL=Y (NI) -Y (N-D)
ZL=Z (NI) -Z (ND)

EDGE =DSQRT (XL*XL+YL*YL+ZL*ZL)

EPSLN= (VOLND (ND) +VOLND (NI)) *0.5/EDGE

IF (IE.EQ.5) SUMDC=SUMDC+EPSLN* ( (DC4 (ND) -i .0) *KAPA4*ISW+DIS4 (ND, 6) )

SUMD0=SUMD0- (DIS4 (NI, IE) -DIS4 (ND, IE) )*EPSLN*KAPA4 *ISW
CONTINUE

CONTINUE

CONT INUE

IF (IE.EQ.5)DC4 (ND)=SUMDC

E0 (ND)=SUMD0

DO 150 ND = I,NNM

DIS4 (ND, IE) =E0 (ND) +DIS4 (ND, IE) *DIS4 (ND, 6)
RE TURN

END

SUBROUTINE DSFSUR (DSURF, NGP, NPE, NDIM)

THIS SUBROUTINE EVALUATES THE DERIVATIVES OF THE SHAPE FUNCTIONS

AT THE GAUSS POINTS OF THE SURFACES OF AN ELEMENT

C

C

C

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION XNODE (8, 3) ,XYZ (3) ,DSURF (NDIM, NPE, 6,NGP,NGP) ,GAUSS (2)
DATA XNODE/-I.0D0,2*I.0D0,2*-I.0D0,2*I.0D0,-I.0D0,2*-I.0D0,2*I.0D0



C

I0

2O

3O

40

5O
60
8O

1,2"-I. 0D0,2"1.0D0,4"-1.0D0,4"1.0D0/

FCK(A,B,C)=0.125*A*B*C
SQRT3=DSQRT(3.0D0 )
GAUSS (I) =-I. 0D0/SQRT3

GAUSS (2) =-GAUSS (i)

DO 80 KI=I,6
DO 60 NGPI=I,NGP

DO 60 NGPK=I,NGP

GOTO (i0, I0,20, 20,30, 30), K1

XYZ (1) = (-1) **K1

XYZ (2) =GAUSS (NGPI)
XYZ (3)=GAUSS (NGPK)

GOTO 40

XYZ (2) = (-I) **KI

XYZ (3)=GAUSS (NGPI)

XYZ (i) =GAUSS (NGPK)

GOTO 40

XYZ (3) = (-I) **KI

XYZ (I)=GAUSS (NGPI)

XYZ (2 )=GAUS S (NGPK)

DO 50 I=I,NPE
XNPI=XYZ (I) *XNODE (I, I) +I. 0

YNP I=XYZ (2) *XNODE (I, 2) +I. 0

ZNPI=XYZ (3) *XNODE (I, 3) +i. 0

DSURF (i, I, KI, NGPI, NGPK) =FCK (XNODE (I, I), YNPI, ZNPI )

DSURF (2, I, KI,NGPI, NGPK)=FCK (XNPI, XNODE (I,2), ZNPI)

DSURF (3, I, KI,NGPI, NGPK)=FCK (XNP i, YNPI, XNODE (I, 3) )
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE FLUXES (IEL, LEQ, N, NPE, NGP, ELU, SF, GDSF, Cq_ORM, K1, KGI, FLX,

1 EMU, MXE, NBS, NDF, NDIM)

C
C

C

C

C

C

C

C

ELU(I,J) ...... ELEMENT SOLUTION VECTOR (J-TH COMPO. AT I-TH NODE)

SF(I,...) ..... SHAPE FUNCTION ASSOCIATED WITH THE I-TH NODE

GDSF (N, J,..I).GLOBAL DERIVATIVE OF J-TH SHAPE FUNCTION
WITH RESPECT TO X(I) COORDINATE OF THE N-TH ELEMENT

GDINT(I,J) .... INTERPOLATED GDSF ON SURFACE OF AN ELEMENT

SFINT(I) ...... INTERPOLATED SF ON SURFACE OF AN ELEMENT

C

C

C

IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION SF (NPE,NGP,NGP,NGP) ,GDSF (MXE,NPE,NGP,NGP,NGP,NDIM) ,

2 GD INT (8,3 ), SF INT (8 ), GNORM (ND IM, NB S, NGP, NGP ), EMU (NPE),

3 ELU (NPE, 6) ,DU (6, 3) ,U(6) ,UI (6) ,DUI (6, 3) ,DQI (3), VECTR (3)

COMMON/DTA/GAMA, AMU0, TEMP 0, S 1, R0, GPR, GAMI, CFL

K0=(KI+I)/2
FLX=0.0

SQRT3=DSQRT(3.0D0)

DO-LOOP ON GAUSS INTEGRATION BEGINS HERE

DO 200 JJ=I,NGP
DO 200 KK=I,NGP

AMU=0.0

EVALUATE THE COMPONENTS OF THE SURFACE NORMAL AT THE GAUSS POINTS



IF (K0-2)30,40,50
30 NI=I

NIl=2
NJ=JJ
NJI=NJ
NK=KK
NKI=NK
GOTO60

40 NJ=I

NJI=2
NK=JJ

NKI=NK

NI=KK

NI I=NI

GOTO 60

50 NK=I
NKI=2

NI=JJ

NI I=NI

NJ=KK

NJ 1=NJ

C

60 DO 70 I=I,NPE

FI=SF (I, NI, NJ, NK)

F2=SF (I,NI1, NJI, NKI)
SFINT (I) = ((-I) **KI*SQRT3* (F2-FI) +F2+FI) /2.0

F3=GDSF (N, I, NI, NJ, NK, 1 )

F4=GDSF (N, I,NII,NJI, NKI, I)
GDINT (I, I) = ((-I) **KI*SQRT3* (F4-F3) +F4+F3)/2.0

F3=GDSF (N, I, NI, NJ, NK, 2 )

F4=GDSF (N, I, NIl, NJI, NKI, 2)

GDINT (I, 2) = ((-i) **KI*SQRT3* (F4-F3) +F4+F3)/2.0

F3=GDSF (N, I, NI, NJ, NK, 3 )

F4=GDSF (N, I, NIl, NJI, NKI, 3)

GDINT (I, 3) = ((-i) **KI*SQRT3* (F4-F3) +F4+F3)/2.0
70 AMU=AMU+SFINT (I) *EMU (I)

DO I00 J=I,NDF
SUM1=0.0

SUM2=0.0

SUM3=0.0

SUM4=0.0

DO 80 I=I,NPE

SUMI=SUMI+GDINT (I, I) *ELU (I, J)

SUM2=SUM2+GDINT (I, 2) *ELU (I, J)

SUM3=SUM3+GDINT (I, 3 ) *ELU (I, J)
80 SUM4=SUM4+SFINT (I) *ELU (I, J)

DU (J, I) =SUM1

DU (J, 2 )=SUM2

DU (J, 3) =SUM3
I00 U(J) =SUM4

Ul (2)=U (2)/U (i)

U1 (3)=U (3)/U(1)

U1 (4)=U (4)/U(1)

DO 110 J.=2, 4
DUI (J, I)'=(DU(J, l)-Ul (J) *DU(I, I) )

DUI (J, 2) "=(DU (J, 2 )-UI (J) *DU (i, 2 ))

ii0 DUI (J, 3) = (DU (J, 3) -UI (J) *DU (i, 3) )

VECTR (1 )=GNORM (1, KGI, JJ, KK)

VECTR (2) =GNORM (2, KGI, JJ, KK)

VECTR (3) =GNORM (3, KGI, JJ, KK)

C

C COMPUTE PRESSURE, TEMPERATURE, VISCOSITY USING THE SUTHERLAND'S

C LAW, AND THE DIFFUSION CONSTANT AT THE GAUSS POINTS

C

U22=U (2) *U(2)

U23=U (2) *U(3)



C

C

C

U24=U (2) *U(4)

U33=U (3) *U(3)

U34=U (3) *U (4)
U44=U (4) *U(4)

PRES=GAMI* (U (5) -0.5* (U22+U33+U44) /U (1) )

AKH=AMU*GPR

AMU23=2.0*AMU/3.0
AMU43=2.0*AMU23

COMPUTE THE FLUX FOR EACH CONSERVATION EQUATION AT THE NODE

GOTO (140,150,160,170,180), LEQ

140 FLX=FLX+ (U (2) *VECTR (I) +U (3) *VECTR (2) +U(4) *VECTR (3)) *SFINT (IEL)
GOTO 200

150 FLX=FLX+ ((U22+PRES*U (i) +AMU23* (-2.0*DUI (2, i) +DUI (3, 2) +DUI (4,3)) )

1 *VECTR (i) + (U23-AMU* (DUI (3, I) +DUI (2, 2) )) *VECTR (2)
2 + (U24-AMU* (DUI (4, I) +DUI (2,3)) )*VECTR (3)) *SFINT (IEL)/U (I)

GOTO 200
160 FLX=FLX+ ( (U33+PRES*U (I) +AMU23* (-2.0*DUI (3, 2) +DUI (4,3) +DUI (2, I) ) )

1 *VECTR (2)+ (U34-AMU* (DUI (4,2)+DUI (3, 3) )) *VECTR (3)

2 + (U23-AMU* (DUI (2,2) +DUI (3,1)) )*VECTR (i)) *SFINT (IEL) /U(1)
GOTO 200

170 FLX=FLX+ ( (U44+PRES*U (I) +AMU23* (-2.0*DUI (4, 3) +DUI (2, i) +DUI (3,2)) )

1 *VECTR (3 )+ (U24-AMU* (DUI (2, 3) +DUI (4, 1 )) ) *VECTR (1 )

2 + (U34-AMU* (DUI (3, 3) +DUI (4,2)) )*VECTR (2)) *SFINT (IEL)/U (I)
GOTO 200

180 DQI (i) =DU(5, I) -UI (2) *DU (2, i) -UI (3) *DU (3, i) -UI (4) *DU (4, I)

2 +DU (I, i) * (-U (5)/U (I) +Ul (2) *UI (2) +Ul (3) *Ul (3) +UI (4) *Ul (4))

DQI (2) =DU (5,2) -Ul (2) *DU (2,2) -Ul (3) *DU(3,2) -Ul (4) *DU(4, 2)

2 +DU (I, 2) * (-U (5)/U(1) +UI (2) *UI (2) +UI (3) *U1 (3) +UI (4) *UI (4))

DQI (3)=DU (5, 3) -UI (2) *DU (2,3) -UI (3) *DU (3, 3) -UI (4) *DU (4, 3)
2 +DU (i, 3) * (-U (5)/U (I) +Ul (2) *Ul (2) +UI (3) *Ul (3) +Ul (4) *Ul (4))

FLX=FLX+ ((U (2) * (U (5) +PRES) -AMU23*U1 (2) * (2.0*DUI (2, 1) -DUI (3, 2)
2

3

4

5

6

7
8

9

200

C*

C 300

-DUI (4, 3) )-AMU* (Ul (3) * (DUI (2,2) +DUI (3, I) ) +Ul (4) * (DUI (2, 3)

+DU1 (4, I) ) )-AKH*DQI (I)) *VECTR (i)

+ (U (3) * (U (5) +PRES) -AMU23*UI (3) * (2.0*DUI (3,2) -DUI (4, 3)

-DUI (2, i) )-AMU* (UI (4) * (DUI (3, 3) +DUI (4,2)) +UI (2) * (DUI (3, i)

+DUI (2,2)) )-AKH*DQI (2)) *VECTR (2)

+ (U (4)* (U (5) +PRES)-AMU23*UI (4) * (2.0*DUI (4, 3) -DUI (2, I)

-DUI (3, 2) )-AMU* (UI (2) * (DUI (4, i) +DUI (2,3)) +UI (3) * (DUI (4, 2)
+DUI (3, 3 ) ) )-AKH*DQI (3 )) *VECTR (3) )*SF INT (IEL) /U (1 )

CONT INUE

WRITE (6,300) LEQ, FLX

FORMAT (5X,'LEQ =',I2,5X,'FLUX =',E12.4)
RETURN

END

C

C

C
C

C

C

I00

200

SUBROUTINE GCSURF (GC, DSURF, ELX'YZ, NGPI, NGPK, NGP, K1, NDIM, NPE)

GC(I,J) ...... DERIVATIVE OF X(I) W.R.T. XI(J)

DSURF(I,J,K..DERIVATIVE OF PSI(J) W.R.T. XI(I),
ON K-TH SURFACE OF MASTER ELEMENT

J=l, • • .,NPE,

IMPLICIT REAL*8 (A-H,O-Z)

DIMENS ION ELXYZ (NPE, NDIM) ,DSURF (NDIM, NPE, 6, NGP, NGP ) ,GC (NDIM, NDIM)

DO 200 I=I,NDIM

DO 200 K=I,NDIM
SUM=0.0

DO I00 J=I,NPE

SUM=SUM+DSURF (K, J, KI,NGPI, NGPK) *ELXYZ (J, I)
GC (I, K) =SUM
RETURN

END



SUBKOUTINEGMETRY(NNM,NEM,MXE,N,NPE,NGP,ELXYZ,SF,GDSF,CNST,VOL,
1 NDIM,IEL)

C
C
C
C
C
C
C
C
C
C
C

SF(I,II,JJ, KK)........ I-TH SHAPEFUNCTIONAT THE(II,JJ, KK)-TH
GAUSSPOINT

GDSF(N,I,II,JJ,KK, J) ..GLOBALDERIVATIVEOFI-TH SHAPEFUNCTION
WITHRESPECTTOTHEX(J) COORDINATE
FORELEMENTN

DSF(I,J) .............. LOCALDERIVATIVEOFI-TH SHAPEFUNCTION
WITHRESPECTTOJ-TH LOCALCOORDINATE

ELXYZ(I,J)............ J-TH GLOBALCOORDINATEOFI-TH NODE
XYZ(II) ............... II-TH GAUSSIANPOINT

IMPLICITREAL*8(A-H,O-Z)
DIMENSIONSF(NPE,NGP,NGP,NGP), CNST(MXE,NGP,NGP,NGP), VOL(MXE),

2 GDSF(MXE,NPE,NGP,NGP,NGP,NDIM),ELXYZ(NPE,NDIM),WT(2),
3 GAUSS(2), GJ(3,3) ,XYZ(3), GJINV(3,3) ,DSF(3, 8), GDSFL(3,8),
4 SFL(8)
COMMON/GMT/SN22(8,8), SN33(8, 8), SN44(8,8), SN55(8, 8)
DATANCOUNT/0/

C

SQRT 3=DSQRT (3.0D0 )

GAUSS (i) _-i. 0D0/SQRT3

GAUSS (2) =-GAUSS (I)

WT (I) =I. 0D0

WT (2)=I. 0D0

C
C DO-LOOP ON GAUSS INTEGRATION BEGINS HERE

C

VOL (N) =0.0

DO 50 J=I,NPE

SN22 (N, J)=0.0
SN33 (N, J)-_0.0

SN44 (N,J) =0.0

50 SN55 (N, J)=0.0

DO 200 II=I,NGP

DO 200 JJ=I,NGP

DO 200 KK=I,NGP
XYZ (I) =GAUSS (II)

XYZ (2)=GAUSS (JJ)

XYZ (3)=GAUSS (KK)
C ****************************************************************

CALL SHAPEL (XYZ, SFL, DSF, NDIM, NPE)

CALL MATMUL (DSF, ELXYZ, GJ, NDIM, NPE, NDIM)

CALL INVDET (GJ, GJINV, DET)

CALL MATMUL (GJINV, DSF, GDSFL, NDIM, NDIM, NPE)
C ****************************************************************

CNST (N, II, JJ, KK) =DET*WT (II) *WT (JJ) *WT (KK)

DO 150 I=I,NPE
SN22 (N, I)=SN22 (N, I) + (4.0/3.0*GDSFL (i, IEL) *GDSFL (i, I) +

1 GDSFL (2, IEL) *GDSFL (2, I) +GDSFL (3, IEL) *GDSFL (3, I) ) *

2 CNST (N, II, JJ, KK)
SN33 (N, I)=SN33 (N, I) + (4.0/3.0*GDSFL (2, IEL) *GDSFL (2, I) +

1 GDSFL (3, IEL) *GDSFL (3, I) +GDSFL (i, IEL) *GDSFL (i, I) ) *

2 CNST (N, II, JJ, KK)

SN44 (N, I)=SN44 (N, I) + (4.0/3.0*GDSFL (3, IEL) *GDSFL (3, I) +

1 GDSFL (I, IEL) *GDSFL (I, I) +GDSFL (2, IEL) *GDSFL (2, I) )*

2 CNST (N, II, JJ, KK)

SN55 (N, I) =SN55 (N, I) + (GDSFL (i, IEL) *GDSFL (I, I) +
1 GDSFL (2, IEL) *GDSFL (2, I) +GDSFL (3, IEL) *GDSFL (3, I) )*

2 CNST (N, II, JJ, KK)
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150
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IF (NCOUNT.GT.0)GOTOI00
SF(I, II, JJ,KK)=SFL(I)
GDSF(N,I, II, JJ,KK,I) =GDSFL(I, I)
GDSF(N,I, I I, JJ,KK,2)=GDSFL(2,I)
GDSF(N,I, II, JJ,KK,3)=GDSFL(3,I)
VOL(N)=VOL(N)+CNST (N, II, JJ, KK)

CONTINUE

NCOUNT = 1

RETURN

END

C

C

C

C

C

C

C

C

C

C

SUBROUTINE INTIAL (NDF, NNM, AMACH, AMU0, TEMPO, SI, R0, GAMA, PR, U, DNST0 )

INITIAL CONDITIONS FOR THE TURN-AROUND-DUCT PROBLEM

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/MSH /ARCANG, NX, NY, NZ, NXI, NX2, NX3
DIMENSION U (NNM, 6)

I0

20

DEFINE FIXED PARAMETERS

GAMI=GAMA- 1.0

N'YY=NY+ 1

NZZ=NZ+I

INITIALIZE THE FLOW FIELD

DO i0 J=2,4

DO i0 I=I,NNM

U(I, J)=0.0

DO 20 IZ=I,NZZ

DO 20 IY=2,NY

ND = IY + (IZ-l)*NYY

U (ND, 2) ---DSQRT (GAMA*R0 *TEMPO) *AMACH

IF (IY.EQ.2 .OR. IY.EQ. 8)U (ND, 2) =U (ND, 2) *0. 1885

IF (IY.EQ.3.OR. IY.EQ.7) U (ND, 2) =U (ND, 2) *0. 5066

IF (IY.EQ.4.OR. IY.EQ. 6)U (ND, 2) =U (ND, 2) *0.8393
CONTINUE

INITIALIZE THE MID PLAICE

DO 30 IX = 2,NXI+I

DO 30 IY = 2,NY
ND = (IX-I)*NYY*NZZ+NYY+IY

NDI= NYY+IY

30 U(ND,2) = U(NDI,2)

PI = ATAN(I.0)*4.0

DO 40 IX = NXI+2,NXI+NX2

DO 40 IY = 2,NY
ND = (IX-I)*NYY*NZZ+NYY+IY

NDI= NYY+IY

U(ND,2) = U(NDI,2)*COS((IX-NXI-I)*PI/NX2)

40 U(ND,3) =-U(NDI,2)*SIN((IX-NXI-I)*PI/NX2)

DO 45 IX = NXI+NX2+I,NX+I
DO 45 IY = 2,NY

ND = (IX-I)*NYY*NZZ+NYY+IY

NDI= NYY+IY

U(ND,2) =-U(NDI,2)
45 CONTINUE

U(ND,3) AND U(ND,4) ARE ZERO (HENCE, U(ND,5) IS _; DEFINED BELOW)
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DO50 ND--I,NNM
U(ND,I) =DNST0
U(ND,2)=U(ND,2) *U (ND, i)

U(ND, 6) =U (ND, I) *R0*TEMP0
U (ND, 5) =U (ND, 6)/GAMI+0.5*U (ND, 2) *U (ND, 2)/U (ND, i)

CONTINUE

RETURN

END

C

C

SUBROUTINE INVDET (A, B, DET)

IMPLICIT KEAL*8 (A-H,O-Z)

DIMENSION A(3,3),B(3,3)

G(ZI, Z2, Z3, Z4) =ZI*Z2-Z3*Z4

F(ZI,Z2, Z3, Z4)=G(ZI, Z2, Z3,Z4)/DET

CI--G (A (2,2) ,A(3, 3) ,A(2, 3) ,A(3,

C2=G (A(2,3) ,A(3, i) ,A(2, I) ,A(3,

C3=G(A(2,1),A(3,2),A(2,2),A(3,

DET=A (i, I) *CI+A (I, 2) *C2+A(I, 3)

B(I, I) =F (A (2,2) ,A(3,3) ,A(3, 2),
B (I, 2) =-F (A (I, 2) ,A(3, 3), A(I, 3)

B(I,3)=F(A(I,2),A(2,3),A(I,3),
B (2, I) =-F (A(2, I) ,A(3, 3) ,A(2,3)

B (2,2) =F (A(I, I), A(3, 3) ,A (3, I),

B(2,3) =-F (A (i, i) ,A(2,3) ,A(I, 3)

B(3, i) =F (A(2, I) ,A(3, 2) ,A(3, i),

B(3, 2)=-F (A(1, I) ,A(3,2) ,A(I, 2)

B(3, 3)=F (A (I, I) ,A(2,2) ,A(2, i),
RETURN
END

2))
3))

i))
*C3

A(2, 3) )

,A(3,2))

A(2, 2) )

,A(3,1))

A(I,3))

,A(2,1))

A(2, 2) )

,A(3,1))

A(I,2))

C

I0
2O

SUBROUTINE MATMUL (A, B, C, M, N, L)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A (M, N), B (N, L), C (M, L)
DO 20 I=I,M

DO 20 J=I,L
SUM=0.0

DO i0 K=I,N

SUM=SLTM+A (I, K) *B (K, J)
C (I, J) =SUM
RETURN

END

SUBROUTINE SHAPEL (XYZ, SF, DF, NDIM, NPE)

C

C

C

C

SHAPE FUNCTIONS FOR LINEAR, ISOPARAMETRIC 3-DIMENSIONAL ELEMENT
THIS SUBROUTINE EVALUATES THE SHAPE FUNCTIONS AND THEIR FIRST

DERIVATIVES AT THE GAUSSIAN POINT XYZ

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION XNODE(8,3),XYZ(NDIM),SF(NPE),DF(NDIM,NPE)
DATA XNODE/-I.0D0,2*I.0D0,2*-I.0D0,2*I.0D0,-I.0D0,2*-I.0D0,2*I.0D0

1,2*-I.0D0,2*I.0D0,4*-I.0D0,4*I.0D0/

FCK (A, B, C) =0 .125*A*B*C

DO 20 I=I,NPE

XNPI=XYZ (i) *XNODE (I, I) +i. 0

YNPI=XYZ (2) *XNODE (I, 2) +I. 0

ZNPI=XYZ (3) *)(NODE (I, 3) +i. 0
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SF(I) =FCK (XNPI, YNPI, ZNPI)

DF (I, I) =FCK (XNODE (I, I), YNPI, ZNPI)

DF (2, I) =FCK (XNPI, XNODE (I,2), ZNPI)

DF (3, I) =FCK (XNPI, YNPI, XNODE (I, 3) )
RETURN

END

SUBROUT INE SURFGM (KI, KGI, ELXYZ, DSURF, GNORM, NBS, NGP, NPE, NDIM)

C

C GNORM(I,J,K,L) .... I-TH COMPONENT OF 'NORMAL*DS' ON J-TH BOUNDARY

C SURFACE AT (K,L) GAUSS POINT

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION ELXYZ (NPE, NDIM) ,DSURF (NDIM, NPE, 6, NGP, NGP) ,GC (3, 3) ,

* GNORM (NDIM, NBS, NGP, NGP )
C

K0 = (KI+I)/2
K2=K0+I

IF (K2.EQ.4) K2=I
K3=K2+I

IF (K2.EQ.3) K3=I

DO 200 NGPI=I,NGP
DO 200 NGPK=I,NGP

C

CALL GCSURF (GC, DSURF, ELXYZ, NGPI, NGPK, NGP, KI, NDIM, NPE)

DO 100 I=I,NDIM
Ii=I+l

IF(II.EQ.4)II=I
I2=Ii+l

IF (II.EQ.3) I2=I

i00 GNORM(I, KGI,NGPI,NGPK) = (GC (Ii, K2) *C-C (I2,K3) -GC (Ii, K3) *GC (I2, K2) )
1 * (-i) **KI

200 CONTINUE

RETURN

END

*

MESH GENERATOR FOR TURN AROUND DUCT.

PURPOSE : TO GENERATE A THREE DIMENSIONAL MESH FOR A TURN AROUND
DUCT. THE ELEMENT LIBRARY HAS THREE TYPES OF ELEMENTS

VIZ. 8-NODED, 20 NODED, AND 27 NODED BRICK ELEMENTS.

FACE 3

(L. SIDE)
5

/
1 o..... /
/ /

/
/ FACE 1

..... / (TOP)

/
----------

S 2 0

I /
i /
I / FACE 6

FACE 5 (BACK)

0 4

/I
/ I

/ I
/ <-+-- FACE 4

/ I (R. SIDE)

0 8 I
+..... 0 3

I /
J .../... FACE 2

I /

ETA
/i

/ I
ZETA XI

(BOTTOM)



* LIST

* NXI
* NX2
* NX3
* NY
* NZ
* NPE
* NOD
* IEL
* R1
* R2
* X0

* Y0

* Z0

* x (NNM)
* Y (NNM)
* Z (NNM)

{ / (FRONT)
{/

6 0

OF VARIABLES :

I /
I/
o 7

LINEAR RECTANGULAR ELEMENT

(NNM, NPE )

= NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 1 (INLET)

•= NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 2 (CURVE)

•_ NUMBER OF DIVISIONS IN FLOW DIRN. IN PART 3 (OUTLET)
•_ NUMBER OF DIVISIONS IN RADIAL DIRECTION:

= NUMBER OF DIVISIONS IN Z-DIRECTION:

•= NODES PER ELEMENT. (8 OR. 20 OR 27)

= CONNECTIVITY MATRIX

R ELEMENT TYPE (i " LINEAR(8 NODED) ; 2 - QUADRATIC)

= INNER RADIUS OF THE CURVE.
= OUTER RADIUS OF THE CURVE.

= X - COORDINARE OF FIRST NODE IN X-Y-Z PLANE.

= Y - COORDINARE OF FIRST NODE IN X-Y-Z PLANE.

= Z - COORDINATE OF FIRST NODE IN X-Y-Z PLANE

= ARRAY CONTAINING X-COORDINATES OF NODES.

= ARRAY CONTAINING Y-COORDINATES OF NODES.

= ARRAY CONTAINING Z-COORDINATES OF NODES.

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/MSH/ARCANG, NX, NY, NZ, NXI, NX2, NX3

DIMENSION DXI(10),DX3(10),DY(20),DZ(5),X(NNM),Y(NNM),Z(NNM),
# IBNDC (NNM, NDF), KELSUR (NBS, 2), NOD (NEM, NPE)

READ(5,*) NXl, NX2, NX3, NY, NZ, IEL, NPE, RI, R2, X0, Y0, Z0,
# ARCANG

COMPUTE THE NUMBER OF ELEMENTS AND NODES IN THE MESH:

PI = 3. 141592654

NELM = (NXI+NX2+NX3) *NY*NZ
NXXI = IEL*NXl

NXX3 = IEL*NX3

NYY = IEL*NY
NZZ = IEL*NZ

IF(Z0 .LE. 1.0E-10) THEN
PHI = 0.0D0

ELSE

PHI = ATAN(Z0/X0)
END IF

ARCANG = ARCANG*PI/180

ANGINC = ARCANG/NZZ

RZ = DSQRT(Y0*Y0 + Z0*Z0)
RZ = Y0

READ (5, *) (DXI (I), I=l, NXXI)

READ (5, *) (DX3 (I), I=l, NXX3)

READ (5, *) (DY (I), I=I,NYY)

NXXl = IEL*NXI + 1

NXX2-- IEL*NX2

NXX3 = IEL*NX3

NYY = IEL*NY + 1

NZZ = IEL*NZ + 1

IF(NPE .EQ. 20) THEN



I000

NDS= NYY*((NXl+ NX2+ NX3+ I)*(NZ+I)) +
# (NY+I)* ((NXI+NX2+NX3+I)+ (NZ+I)* (NXI+NX2+NX3))
ELSE

NDS= NYY*(NXXI+ NXX2+ NXX3)*NZZ
ENDIF

IF (NDS.NE.NNM.OR. NEM.NE.NELM)THEN
WRITE(6,999)NNM,NDS,NEM,NELM
STOP
ENDIF

NTX = IEL*NXI + 1
NTXX = IEL*NX2
NTXXX= IEL*NX3
NTXT = NTX+ NTXX
NTXTT= NTXT+ NTXXX

COMPUTETHENODALCOORDINATESIN SECTION1 (STRAIGHTINLET)

NTY= IEL*NY+ 1
NTZ= IEL*NZ+ 1
NYI = (IEL-I)*NY + 1

IIX = 0
L = 0
DO1050IX = i, NTX

IF(NPE .EQ. 20) THEN
MODY= MOD (IX, 2)

ELSE

MODY = 1

END IF

ZC = Z0

ANGLE = PHI

IF(MODY .EQ. i) THEN

IF(NPE .EQ. 20) THEN

I = (NYY*(NZ+I) + (NY+I)*(NZZ))*IIX
ELSE

I = NYY*(IX - I)*NZZ
END IF

DO 1020 IZ = i, NTZ

IF(NPE .EQ. 20) THEN

MODZ = MOD(IZ,2)
ELSE

MODZ = 1

END IF

IF(MODZ .EQ. i) THEN
I = I + 1

X(1) = X0

Y(I) = RZ*COS(ANGLE)

Z (I) = RZ*SIN(ANGLE)

DO i000 IY = i, NTY-I
I = I + I

X(1) = X0

Y(I) = (Y(I-I) + DY(IY))*COS(ANGLE)

Z(I) = (Y(I-I) + DY(IY))*SIN(ANGLE)
CONTINUE

ELSE

I = I + 1

X(I) = X0

Y(I) = Y0*COS (ANGLE)



I010

1020

lit

1030

1040

Z(I) = ZC*SIN(ANGLE)

DO I010 IY = I, (NTY-NYI)

I = I + 1

K -- 2*IY - 1

X(I) = X0

Y(I) -- (RZ + DY(K) + DY(K+I))*COS(ANGLE)

Z(I) = (RZ + DY(K) + DY(K+I))*SIN(ANGLE)

CONT INUE

END IF

IF(IZ .LT. NTZ) ANGLE = ANGLE + ANGINC

CONTINUE

IIX = IIX + 1

ELSE

DO 1040 IZ = I, (NZ+I)

I = I + 1

M = 2*IZ - 1

X (I) = X0

Y(I) = RZ*COS (ANGLE)

Z(I) = RZ *SIN (ANGLE)

DO 1030 IY = i, (NTY-NYI)

I,= I + 1

K .= 2*IX - 1

X(I) = X0

Y(I) = (RZ + DY(K) + DY(K+I))*COS(ANGLE)

Z(I) = (RZ + DY(K) + DY(K+I))*SIN(ANGLE)

CONTINUE

ANGLE = ANGLE + ANGINC

CONTINUE

END IF

IF(IX .LT. NTX) X0 = X0 - DXI(IX)

1050 CONTINUE

COMPUTE THE NODAL COORDINATES IN THE CURVED SECTION:

NXPTI = NTX + 1

THINC = PI/NXX2

THETA = PI + THINC

YC = Y0 + R2

DO III0 IX = NXPTI, NTXT

IF(NPE .EQ. 20) THEN

MODY = MOD (IX, 2)

ELSE

MODY = 1

END IF

ZC = Z0

ANGLE = PHI

IF(MODY .EQ. I) THEN

DO 1080 IZ = I, NTZ

IF(NPE .EQ. 20) THEN

MODZ = MOD(IZ,2)

ELSE

MODZ = 1

END IF

IF(MODZ .EQ. I) THEN

I = I + 1
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1070

1080

1090

ii00

III0

X(I) = X0 + R2*SIN(THETA)
Y(I) = (YC + R2*COS (THETA)) *COS (ANGLE)

Z (I) = (YC + R2*COS (THETA)) *SIN (ANGLE)

ELSE

DYY = 0.0D0

DO 1060 IY = i, NTY-I
I = I + 1

DYY = DYY + DY(IY)

X(I) -- X0 + (R2 - DYY)*SIN(THETA)

Y (I) --(YC+ (R2-DYY) *COS (THETA)) *COS (ANGLE)

Z (I) = (YC+ (R2-DYY) *COS (THETA)) *SIN (ANGLE)

CONTINUE

I= I + 1

X(I) = X0 + R2*SIN(THETA)

Y(I) = (YC + R2*COS (THETA)) *COS (ANGLE)
Z (I) = (YC + R2*COS (THETA)) *SIN (ANGLE)

DYY = 0.0D0

DO 1070 IY = i, (NTY-NYI)

I = I + 1
K = 2*IY - 1

DYY = DYY + DY(K) + DY(K+I)

X(I) = X0 + (R2 - DYY)*SIN(THETA)

Y (I) z (YC+ (R2-DYY) *COS (THETA)) *COS (ANGLE)
Z (I) = (YC+ (R2-DYY) *COS (THETA)) *COS (ANGLE)

CONTINUE

END IF

IF(IZ .LT. NTZ) ANGLE = ANGLE + ANGINC

CONT INUE
IIX = IIX + 1

ELSE

DO 1100 IZ -- I, (NZ+I)
I = I + 1

M = 2*IZ - 1

X(I) ,= X0 + R2*SIN(THETA)

Y (I) -= (YC + R2*COS (THETA)) *COS (ANGLE)
Z (I) ,= (YC + P,2*COS (THETA)) *SIN(ANGLE)

DYY = 0.0D0

DO 1090 IY = I, (NTY-NYI)
I == I + 1
K == 2*IY - 1

DYY s DYY + DY(K) + DY(K+I)

X(I) = X0 + (R2 - DYY)*SIN(THETA)

Y(I) = (YC+ (R2-DYY) *COS (THETA)) *COS (ANGLE)

Z (I) = (YC+ (R2-DYY) *COS (THETA)) *SIN (ANGLE)
CONTINUE

ANGLE = ANGLE + 2.0*ANGINC

CONT INUE

END IF

THETA = THETA + THINC

CONTINUE

COMPUTE THE NODAL COORDINATES IN SECTION 3

NTXPII = NTXT + 1

Y0 = Y0 + 2.0*R2*COS(PHI)
J = 0

DO 1170 IX = NTXPII, NTXTT

(STRAIGHT OUTLET)
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1130

1140

IF(NPE .EQ. 20) THEN

MODY = MOD(IX,2)
ELSE

MODY = 1

END IF

J= J+ 1

X0 = X0 + DX3(J)

ZC = Z0 + 2.0*R2*SIN(PHI)
ANGLE = PHI

IF(MODY .EQ. i) THEN

DO 1140 IZ = i, NTZ

IF(NPE .EQ. 20) THEN

MODZ = MOD(IZ,2)
ELSE

MODZ = 1
END IF

IF(MODZ .EQ. I) THEN
I = I + 1

X(I) = X0

Y(I) = Y0*COS(ANGLE)
Z(I) = Y0*SIN(ANGLE)

DYY = 0.0D0

DO 1120 IY -- i, NTY-I

DYY = DYY + DY(IY)
I = I + 1

X(1) : X0

Y(I) = (RZ + 2"R2 -DYY) *COS (ANGLE)

Z(I) = (RZ + 2"R2 - DYY) *SIN (ANGLE)
CONTINUE

ELSE

I = I + 1

X(I) = X0

Y(I) = Y0*COS(ANGLE)

Z(I) = Y0*SIN(ANGLE)

DO 1130 IY = I, (NTY-NYI)
I = I + 1

K = 2*IY - 1

X(1) -- X0

Y (I) = (RZ+2*R2-DY (K) -DY (K+I)) *COS (ANGLE)
Z (I) = (RZ+2*R2-DY (K) -DY (K+I)) *SIN (ANGLE)

CONTINUE

END IF

IF(IZ .LT. NTZ) ANGLE = ANGLE + ANGINC
CONTINUE

IIX = IIX + 1

ELSE

DO 1160 IZ = i, (NZ+I)
I = I + 1

M = 2*IZ - 1

X (I) -- X0*COS (ANGLE)
Y(I) = Y0

Z(I) = X0*SIN(ANGLE)

DO 1150 IY = I, (NTY-NYI)
I = I + 1
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1160

1170
W

1175

C

C
C

C
C

C

C

C

C

C

C

C

C

C

C

K = 2*IY - 1

X(1) = X0

Y (I) = (RZ+2*R2-DY (K) -DY (K+I)) *COS (ANGLE)

Z(I) = (RZ+2*R2-DY(K)-DY(K+I))*SIN(ANGLE)

CONTINUE

ANGLE = ANGLE + 2.*ANGINC

CONTINUE

END IF

CONTINUE

DO 1175 I=I,NNM
X(I) =0. 0254"X(I)

Y (I) =0. 0254"Y(I)

Z (I) =-0. 0254"Z (I)

DETERMINE THE CONNECTIVITY MATRIX:

NX = NXI + NX2 + NX3

IF(NPE .EQ. 20) NTY = 3*NY + 2

DO 1200 IX = I, NX

DO 1190 IZ = i, NZ

DO 1180 IY = I, NY

I = IY + (IX-1)*NY*NZ + (IZ-I)*NY

IF(NPE .EQ. 20) THEN

NOD(I,1) = IEL*IY- (IEL-I) + (NYY*(NZ+I) +
(NY+I) *NZZ) * (IX-l) + (IZ-I) * (NYY+NY)

NOD(I,2) -- NYY*(NZ+I)+(NY+I)*NZZ + NOD(I,1)
ELSE

NOD(I,1) = IEL*IY - (IEL-I) + (IX-I)*

(NYY*NZZ) *IEL+ (IZ-I) *IEL*NYY

NOD(I,2) = NYY*NZZ*IEL + NOD(I,1)
END IF

NOD(I,3) '= NOD(I,2) + IEL

NOD(I,4) " NOD(I,1) + IEL

IF(NPE .EQ. 20) THEN

NOD(I,5) = NTY + NOD(I,1)

NOD (I, 6) = NYY* (NZ+I) + (NY+I) *NZZ + NOD (I, 5)
ELSE

NOD(I,5) = NYY + NOD(I,1)
NOD (I, 6) = NYY*NZZ*IEL + NOD (I, 5)

END IF

NOD(I,7) = NOD(I,6) + IEL

NOD(I,8) = NOD(I,5) + IEL
IF(NPE .EQ. 20) THEN

NOD(I,9) = NOD(I,1) + NYY*(NZ+I) + (NY+I)*NZ

+ (I-IY)

NOD(I, 10) = NOD(I,2) + 1

NOD(I,11) = NOD(I, 9) + 1

NOD(I,12) = NOD(I,1) + 1

NOD(I,13) ,= NYY + NOD(I,1)

NOD(I,14) = NYY + NOD(I,2)
NOD(I,15) = NOD(I,14) + 1

NOD(I, 16) = NOD(I,13) + 1
NOD(I,17) = NOD(I,5) + (NYY + NY + I)*NZ +

(I-IY)

NOD(I,18) = NOD(I,6) + 1
NOD(I,19) = NOD(I,17) + 1

NOD(I,20) = NOD(I,5) + 1
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1180
1190
1200

W

1210

1220

W

W

1230

W

ELSE IF (NPE .EQ.

NOD (I, 9) =

NOD(I,10) =

NOD (I, II) =

NOD (I, 12) =

NOD (I, 13) =
NOD (I, 14) =

NOD (I, 15) =

NOD (I, 16) --

NOD (I, 17) =

NOD (I, 18) =

NOD (I, 19) =

NOD (I, 20) --

NOD (I, 21) =

NOD (I, 22) =

NOD(I,23) --

NOD (I,24) -=

NOD (I, 25) =
NOD (I, 26) --

NOD (I, 27) =

END IF

CONT INUE

CONTINUE

CONTINUE

27 ) THEN

NOD (I, 5)

NOD (I, 9)

NOD (I, I0)

NOD (I, 9)

NOD (I, i)

NOD (I, 2 )

NOD (I, 13)

NOD (I, I)

NOD (I, 5)

NOD (I, 6)

NOD (I, 17)

NOD (I, 5)

NOD (I, 9)

NOD (I, i0)

NOD (I, 21)

+NYY

+ NYY*NZZ*IEL

+IEL

+ IEL

+ NYY*NZZ

+I
+2

+I

+ NYY*NZZ
+i

+2

+i

+NYY*NZZ

+I
+2

NOD(I,9) + 1
NOD(I,13) + 1

NOD(I, 17) + 1

NOD(I,21) + 1

COMPUTE THE NUMBER OF BOUNDARY SURFACES AND DETERMINE SURFACE

INDICES

NSURF = 2*NX*(NY+NZ) +2*NY*NZ

ELEMF_/_T FLUX SURFACES AT THE INLET OF THE DUCT:

I = 0

NYZ = NY*NZ

DO 1210 IYZ -- I, NYZ
I = I + 1

KELSUR(I,I) = IYZ

KELSUR(I,2) = 1
CONTINUE

ELEMENT FLUX SURFACES AT THE SOLID SURFACE OF THE DUCT (OUTER):

DO 1220 IX = i, NX

DO 1220 IZ = I, NZ
I = I + 1

ILL = (IX-I) *NY*NZ + (IZ-I) *NY + 1

KELSUR(I, i) = ILL

KELSUR(I,2) = 3
CONTINUE

ELEMENT FLUX SURFACES AT THE SOLID SURFACE OF THE DUCT (INNER):

DO 1230 IX z I, NX

DO 1230 IZ = i, NZ
I = I + 1

ILL = (IX-I)*NY*NZ + IZ*NY

KELSUR(I,I) _ ILL

KELSUR(I,2) - 4

CONTINUE

ELEMENT FLUX SURFACES AT SYMMETRY SURFACE OF THE DUCT (IZ = i):

DO 1240 IX = I, NX
DO 1240 IY = i, NY

I = I + 1



1240

1250

ILL = IY + (IX-I)*NY*NZ
KELSUR(I,I) = ILL
KELSUR(I,2)= 5

CONTINUE

ELEMENTFLUXSURFACESATSYMMETRYSURFACEOFTHEDUCT(IZ = NZ):

DO1250IX = i, NX
DO1250 IY = i, NY
I = I + 1

ILL = IY + (IX-I) *NY*NZ + NY* (NZ-I)

KELSUR(I,I) = ILL

KELSUR(I,2) = 6
CONTINUE

ELEMENT FLUX SURFACES AT THE INLET OF THE DUCT:

J-- 0

DO 1260 IZ = i, NZ

DO 1260 IY = I, NY
J= J+ 1

I-- I + 1

ILL = (NX-I)*NY*NZ + J

KELSUR(I,I) = ILL

KELSUR(I,2) = 2

1260 CONTINUE

1212

1270

1280

CC

DETERMINE THE BOUNDARY CONDITIONS:

NBNDC = 0

ND = 0

NXX = NX + 1

NYY = NY + 1

NZZ = NZ + 1

DO 1212 I = I, NDS

DO 1212 J = I, 5

IBNDC(I,J) = 1

CONTINUE

SPECIFY THE I N L E T BOUNDARY DEGREES OF FREEDOM

DO 1280 ID = I, NYY

DO 1270 JD = i, NZZ
ND=ND+ 1

NBNDC -- NBNDC + 1

IBNDC(ND,2) = 0

IBNDC (ND, 3) -- 0
IBNDC (ND, 4) = 0

IBNDC (ND, 5) = 0

CONTINUE

CONTINUE

SPECIFY THE S O L I D - W A L L BOUNDARY DEGREES OF FREEDOM

DO 1300 KD = i, NX
NDI = (NYY*NZZ) *KD + 1

DO 1290 JZ = i, NZZ

ND = NDI + (JZ-I) *NYY
NBNDC = NBNDC + 1

IBNDC(ND,2) = 0

IBNDC(ND,3) = 0
IBNDC (ND, 4) = 0

IBNDC (ND, 5) = 0



CC

1290

1300

C

C
1310

1320

C

NBNDC = NBNDC + 1

IBNDC (ND+NY, 2) = 0

IBNDC(ND+NY, 3) = 0

IBNDC (ND+NY, 4) = 0

IBNDC (ND+NY, 5) = 0

CONTINUE

CONTINUE

SPECIFY THE E X I T BOUNDARY DEGREES OF FREEDOM

NBDI = NYY*NZZ*NX

DO 1320 I = I, NZZ

NBD = NBDI + (I-l) *NYY

DO 1310 J = i, NYY
NBD - NBD + 1

NBNDC -= NBNDC + 1

IBNDC (NBD, 5) = 0

IBNDC (NBD, 3) = 0

IBNDC (NBD, 4) = 0
CONTINUE

CONTINUE

RETURN

999 FORMAT(/,5X,'***** THE PARAMETERS NNM AND NEM SENT FROM THE MAIN

# DO NOT COINCIDE WITH THOSE GENERATED IN TADMSH *****' ,/,5X, '*****

# THE PROGRAM IS TERMINATED *****',/, 5X, 'NNM, NDS,NEM, NELM =' , 415)
END

FLOW IN A TURN-AROUND-DUCT (15X8X2 MESH)
1 1 02 i00 05. 1.0 0.8

1.79E-03 293.0 Ii0.0 287.0 1.402 0.72 0.I 1.205

3 8 4 8 2 1 8 1.0 3.0 33.0 9.0 0.0 2.0

20.0 8.0 2.0
0.5 1.5 8.0 20.0

0.I 0.2 0.3 0.4 0.4 0.3 0.2 0.I


